Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:48:57.846Z Has data issue: false hasContentIssue false

Horizontal and vertical motions of barotropic vortices over a submarine mountain

Published online by Cambridge University Press:  08 February 2012

L. Zavala Sansón*
Affiliation:
Departmento de Oceanografía Física, CICESE, Carretera Ensenada-Tijuana 3918, 22860 Ensenada, Baja California, México
A. C. Barbosa Aguiar
Affiliation:
Centro de Oceanografia, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
G. J. F. van Heijst
Affiliation:
Department of Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

The evolution of barotropic vortices over a topographic, axisymmetric mountain in a homogeneous rotating fluid is studied experimentally. The aim is to identify the main physical processes observed in (i) a horizontal plane of motion, perpendicular to the rotation axis of the system, and (ii) a vertical plane across the diameter of the mountain. The vortices are monopolar cyclones initially generated near or over the topography. Initially, the vortices drift towards the mountain due to the -effect associated with the topographic slope. On arriving, they turn around the obstacle in an anticyclonic direction, whilst anticyclonic vorticity is generated over the summit. The long-term vorticity distribution is dominated by the original cyclone elongated around the topographic contours and the generated anticyclone over the tip of the topography. In the vertical plane an oscillatory uphill–downhill flow is generated, which is directly related to the drift of the cyclone around the mountain. Depending on the vortex characteristics, the period of the oscillation ranges from 4 to 10 times the rotation period of the system. The horizontal and vertical flow fields are reproduced numerically by using a shallow-water formulation, which allows a detailed view of the vertical motions, hence facilitating the interpretation of the experimental results. In addition, the cyclone–anticyclone pair over the mountain is compared with analytical solutions of topographically trapped waves. A general conclusion is that vertical motions persist for several days (or rotation periods), which implies that this mechanism might be potentially important for the vertical transport over seamounts.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adduce, C. & Cenedese, C. 2004 An experimental study of a mesoscale vortex colliding with topography of varying geometry in a rotating fluid. J. Mar. Syst. 62, 611638.Google Scholar
2. Beckman, A. & Mohn, C. 2002 The upper ocean circulation at the Great Meteor seamount. Part II. Retention potential of the seamount-induced circulation. Ocean Dyn. 52, 194204.CrossRefGoogle Scholar
3. Bretherton, F. P. & Haidvogel, D. B. 1976 Two-dimensional turbulence above topography. J. Fluid Mech. 78, 129154.CrossRefGoogle Scholar
4. Brink, K. H. 1989 The effect of stratification on seamount-trapped waves. Deep-Sea Res. 36, 825844.CrossRefGoogle Scholar
5. Carnevale, G. F., Kloosterziel, R. C. & van Heijst, G. J. F. 1991 Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech. 233, 119139.CrossRefGoogle Scholar
6. Carnevale, G. F., Vallis, G. K., Purini, R. & Briscolini, M. 1988 Propagation of barotropic modons over topography. Geophys. Astrophys. Fluid Dyn. 41, 45101.CrossRefGoogle Scholar
7. Codiga, D. L. 1993 Laboratory realizations of stratified seamount-trapped waves. J. Phys. Oceanogr. 23, 20532071.2.0.CO;2>CrossRefGoogle Scholar
8. Ferrero, E., Loglisci, N. & Longhetto, A. 2002 Numerical experiments of barotropic flow interaction with a 3D obstacle. J. Atmos. Sci. 59, 32393253.2.0.CO;2>CrossRefGoogle Scholar
9. Fincham, A. & Spedding, G. 1997 Low cost, high resolution DPIV for measurement of turbulent fluid flow. Exp. Fluids 23, 449462.CrossRefGoogle Scholar
10. van Geffen, J. H. G. M. & Davies, P. A. 2000 A monopolar vortex encounters an isolated topographic feature on a -plane. Dyn. Atmos. Oceans 32, 126.CrossRefGoogle Scholar
11. Genin, A. 2004 Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50, 320.CrossRefGoogle Scholar
12. van Heijst, G. J. F. & Clercx, H. J. H. 2009 Laboratory modeling of geophysical vortices. Annu. Rev. Fluid Mech. 41, 143164.CrossRefGoogle Scholar
13. Hillier, J. K. & Watts, A. B. 2007 Global distribution of seamounts from ship-track bathymetry data. Geophys. Res. Lett. 34, L13304.CrossRefGoogle Scholar
14. Huppert, H. E. & Bryan, K. 1976 Topographically generated eddies. Deep-Sea Res. 23, 655679.Google Scholar
15. Kloosterziel, R. C. & van Heijst, G. J. F. 1992 The evolution of stable barotropic vortices in a rotating free-surface fluid. J. Fluid Mech. 239, 607629.CrossRefGoogle Scholar
16. Nycander, J. & LaCasce, J. H. 2004 Stable and unstable vortices attached to seamounts. J. Fluid Mech. 507, 7194.CrossRefGoogle Scholar
17. Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
18. Uz, B. M., Yoder, J. A. & Osychny, V. 2001 Pumping of nutrients to ocean surface waters by the action of propagating planetary waves. Nature 409, 597600.CrossRefGoogle ScholarPubMed
19. Verron, J. & Le Provost, C. 1985 A numerical study of quasi-geostrophic flow over isolated topography. J. Fluid Mech. 154, 231252.CrossRefGoogle Scholar
20. Zavala Sansón, L. 2002 Vortex-ridge interaction in a rotating fluid. Dyn. Atmos. Oceans 35, 299325.CrossRefGoogle Scholar
21. Zavala Sansón, L. 2010 Solutions of barotropic waves around seamounts. J. Fluid Mech. 661, 3244.CrossRefGoogle Scholar
22. Zavala Sansón, L., González-Villanueva, A. & Flores, L. M. 2010 Evolution and decay of a rotating flow over random topography. J. Fluid Mech. 642, 159180.CrossRefGoogle Scholar
23. Zavala Sansón, L. & van Heijst, G. J. F. 2002 Ekman effects in a rotating flow over bottom topography. J. Fluid Mech. 471, 239256.CrossRefGoogle Scholar
24. Zavala Sansón, L. & Provenzale, A. 2009 The effects of abrupt topography on plankton dynamics. Theor. Popul. Biol. 76, 258267.CrossRefGoogle ScholarPubMed