Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T15:55:56.671Z Has data issue: false hasContentIssue false

Homogeneous turbulence in the presence of rotation

Published online by Cambridge University Press:  26 April 2006

L. Jacquin
Affiliation:
Office National d'Etudes et de Recherches Aerospatiales (ONERA) Châtillon, France
O. Leuchter
Affiliation:
Office National d'Etudes et de Recherches Aerospatiales (ONERA) Châtillon, France
C. Cambonxs
Affiliation:
Laboratoire de Mécanique des Fluides, Ecole Centrale de Lyon Ecully, France
J. Mathieu
Affiliation:
Laboratoire de Mécanique des Fluides, Ecole Centrale de Lyon Ecully, France

Abstract

Turbulence in solid-body rotation is generated by a flow of air passing through a rotating cylinder containing a dense honeycomb structure and a turbulence-producing grid. The velocity field is probed downstream of this device by hot-wire probes. Using the statistical quantities characterizing the fluctuating field, we show that the rotation affects mainly the components normal to the rotation axis and that these effects are triggered when the Rossby numbers constructed from macroscopic turbulent quantities, are less than unity. These results are discussed in the framework of other available experimental results on the subject. A theoretical interpretation, chiefly based on spectral analysis, is then proposed to explain the trends of the observations.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aupoix, B., Cousteix, J. & Liandrat, J., 1983 Effects of rotation on isotropic turbulence. In Turbulent Shear Flows 4 (ed. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw). Springer.
Batchelor, G. K. & Proudman, I., 1954 The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths 7, 83103.Google Scholar
Bardina, J., Ferziger, J. H. & Rogallo, R. S., 1985 Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321336.Google Scholar
Bertoglio, J. P.: 1980 Influence des forces de Coriolis sur une turbulence soumise à des gradients. Thèse de Docteur Ingénieur, Université Claude Bernard, Lyon, février 1980.
Cambon, C.: 1982 Étude spectrale d'un champ turbulent soumis à des effets couplés de déformation et de rotation imposés extérieurement. Thèse d'État, Université Lyon I.
Cambon, C. & Jacquin, L., 1987 Spectral analysis of a three dimensional homogeneous turbulence submitted to a solid body rotation. In Advances in Turbulence 1 (ed. G. Comte-Bellot & J. Mathieu), pp. 170175. Springer.
Cambon, C. & Jacquin, L., 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295317.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full and narrow-band velocity signal in grid generated ‘isotropic’ turbulence. J. Fluid Mech. 48, 273337.Google Scholar
Courseau, P. & Loiseau, M., 1978 Contribution à l'analyse de la turbulence homogène anisotrope. J. Méc. 17, 246297.Google Scholar
Craya, A.: 1958 Contribution à l'analyse de la turbulence associée à des vitesses moyennes. Publicatiöns Scientifiques et Techniques, Ministère de l'Air, France, no. 345.Google Scholar
Dang, K. & Roy, P., 1985 Direct and large eddy simulation of homogeneous turbulence submitted to solid body rotation. Proc. of the 5th Symp. on Turbulent Shear Flows. Ithaca, NY.Google Scholar
Gence, J. N. & Mathieu, J., 1979 On the application of successive plane strains to grid-generated turbulence. J. Fluid Mech. 93, 501513.Google Scholar
Greenspan, H. P.: 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hopfinger, E. J., Browand, F. K. & Gagne, Y., 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505534.Google Scholar
Hunt, J. C. R., Stretch, D. D. & Britter, R. E., 1988 Length scales in stably stratified turbulent flows and their use in turbulence models. In Stably Stratified Flow and Dense Gas Dispersion (ed. J. S. Puttock), pp. 285321. Clarendon.
Ibbetson, A. & Tritton, D. J., 1975 Experiments on turbulence in a rotating fluid. J. Fluid Mech. 68, 639672.Google Scholar
Itsweire, E., Chabert, L. & Gence, J. N., 1979 Action d'une rotation pure sur une turbulence homogène anisotrope. C. R. Acad. Sci. Paris 289B, 197201.Google Scholar
Jacquin, L.: 1987 Etude théorique et expérimentale de la turbulence homogène en rotation. Thèse d'Etat Université Lyon I octobre 1987.
Jacquin, L., Cambon, C. & Mathieu, J., 1986 Analyse spectrale d'une turbulence homogène axisymétrique soumise à une rotation pure. C. R. Acad. Sci. Paris 302, Ser. 2. no. 18, 11311134.Google Scholar
Jacquin, L., Geffroy, P. & Leuchter, O., 1988 Experimental study of rotation effects on grid generated turbulence for different mesh sizes. 2nd European Turbulence Conference, Berlin. In Advances in Turbulence 2 (ed. H. H. Fernholz & H. E. Fielder), pp. 167174. Springer.
Jacquin, L., Leuchter, O. & Geffroy, P., 1989 Experimental study of homogeneous turbulence in the presence of rotation. In Turbulent Shear Flows 6, pp. 4657. Springer.
Jacquin, L., Leuchter, O. & Geffroy, P., 1990 Etude expérimentale de la turbulence homogène en rotation. La Recherche Aérospatiale (in press).Google Scholar
Lakshminarayana, B.: 1986 Turbulence modeling for complex shear flows. AIAA J. 24, 19001917.Google Scholar
Mory, M. & Caperan, P., 1987 On the genesis of quasi-steady vortices in a rotating turbulent flow. J. Fluid Mech. 185, 121136.Google Scholar
Phillips, O. M.: 1963 Energy transfer in rotating fluids by reflection of inertial waves. Phys. Fluids 6 (4), 513520.Google Scholar
Rogallo, R. S.: 1981 Numerical experiments in homogeneous turbulence. NASA TM-81315.Google Scholar
Rose, W. G.: 1966 Results of an attempt to generate a homogeneous turbulent shear flow. J. Fluid Mech. 25, 97120.Google Scholar
Speziale, C. G., Gatsti, T. B. & Mhuiris, N. M. G. 1989 A critical comparison of turbulence models for homogeneous shear flows in a rotating frame. In Proc. Turbulent Shear Flows Symp., Stanford.
Tavoularis, S. & Corrsin, S., 1981 Experiments in nearly homogeneous turbulent shear flows with a uniform mean temperature gradient. J. Fluid Mech. 104, 311367.Google Scholar
Teissèdre, C. & Dang, K. 1987 Anisotropic behaviour of rotating homogeneous turbulence by numerical simulation, AIAA Fluid and Plasma Dynamics Conference. Honolulu, Hawaii. AIAA paper 87–1250.Google Scholar
Townsend, A. A.: 1954 The uniform distortion of homogeneous turbulence. Q. J. Mech. Appl. Maths 7, 706727.Google Scholar
Townsend, A. A.: 1976 The structure of the turbulent shear flow, 2nd edn. Cambridge University Press.
Traugott, S. C.: 1958 Influence of solid body rotation on screen produced turbulence. NACA TN 4135.Google Scholar
Tritton, D. J. & Davies, P. A., 1981 In Hydrodynamic instabilities and the transition to turbulence (ed. H. L. Swinney & J. B. Gollub), pp. 229240. Springer.
Tritton, D. J.: 1990 Some notes on shear flow turbulence in a rotating fluid. Submitted to the J. Fluid Mech.Google Scholar
Wigeland, R. A. & Nagib, H. M., 1978 Grid generated turbulence with and without rotation about the streamwise direction. IIT Fluids & Heat Transfer Rep. R. 78–1, Illinois Institute of Technology.