Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T18:42:33.535Z Has data issue: false hasContentIssue false

High-speed impacts of slender bodies into non-smooth, complex fluids

Published online by Cambridge University Press:  19 December 2018

Ishan Sharma*
Affiliation:
Mechanics & Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
*
Email address for correspondence: [email protected]

Abstract

We present a simple hydrodynamical model for the high-speed impact of slender bodies into frictional geomaterials such as soils and clays. We model these materials as non-smooth, complex fluids. Our model predicts the evolution of the impactor’s speed and the final penetration depth given the initial impact speed, and the material and geometric parameters of the impactor and the impacted material. As an application, we investigate the impact of deep-penetrating anchors into seabeds. Our theoretical predictions are found to match field and laboratory data very well.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseevskii, V. P. 1966 Penetration of a rod into a target at high velocity. Fizika Goreniya I Vzryva 2, 99106; (translated Combust. Explos. Shock Waves, 63–66).Google Scholar
Allen, W. A., Mayfield, E. B. & Morrison, H. L. 1957a Dynamics of a projectile penetrating sand. J. Appl. Phys. 28, 370376.Google Scholar
Allen, W. A., Mayfield, E. B. & Morrison, H. L. 1957b Dynamics of a projectile penetrating sand. Part II. J. Appl. Phys. 28, 13311335.Google Scholar
Anderson, C. E. Jr 1978 Analytical models for penetration mechanics: a review. Intl J. Impact Engng 108, 326.Google Scholar
Backman, M. E. & Goldsmith, W. 1978 The mechanics of penetration of projectiles into targets. Intl J. Engng Sci. 16, 1100.Google Scholar
Baligh, M. M. 1985 Strain path method. J. Geotech. Engng 111, 11081136.Google Scholar
Baudet, B. A. & Ho, E. W. L. 2004 On the behaviour of deep ocean sediments. Géotechnique 54, 571580.Google Scholar
Birkhoff, G., MacDougall, D. P., Pugh, E. M. & Taylor, G. 1948 Explosives with lined cavities. J. Appl. Phys. 19, 563582.Google Scholar
Casagrande, A. & Wilson, S. D. 1951 Effect of rate of loading on the strength of clays and shales at constant water content. Géotechnique 2, 251263.Google Scholar
Durban, D. & Masri, R. 2004 Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium. Intl J. Solids Struct. 41, 56975716.Google Scholar
Euler, L. 1922 Neue Grundsatze der Artillerie. In Euler’s Opera Omnia, 1st edn, p. 484. Druck und Verlag Von B. G. Teubner.Google Scholar
Forrestal, M. J. & Luk, V. K. 1992 Penetration into soil targets. Intl J. Impact Engng 12, 427444.Google Scholar
Freeman, T. J., Murray, C. N. & Schüttenhelm, R. T. E. 1988 The Tyro 86 penetrator experiments at Great Meteor East. In Oceanology ’88, Advances in Underwater Technology, Ocean Science and Offshore Engineering, vol. 16, pp. 217226. Society of Underwater Technology.Google Scholar
Goodier, J. N. 1965 On the mechanics of indentation and cratering in the solid targets of strain-hardening metal by impact of hard and soft spheres. In Proceedings of the 7th Symposium on Hypervelocity Impact III, pp. 215259. AIAA.Google Scholar
Hill, R. 1980 Cavitation and the influence of headshape in attack of thick targets by non-deforming projectiles. J. Mech. Phys. Solids 28, 249263.Google Scholar
Hopkins, H. G. 1960 Dynamic expansion of spherical cavities in metals. In Progress in Solid Mechanics (ed. Sneddon, I. N. & Hill, R.), vol. 1, pp. 85164. North-Holland.Google Scholar
Katsuragi, H. & Durian, D. J. 2007 Unified force law for granular impact cratering. Nat. Phys. 3, 420423.Google Scholar
Kipp, R. J. & Longscope, D. B. 1973 Use and validation of cavity expansion load models in determining structural response of penetrators into ice targets. In Report SAND 86-1049. Sandia National Laboratories.Google Scholar
Low, H. E., Randolph, M. F., DeJong, J. T. & Yafrate, N. J. 2004 Variable rate full-flow penetration tests in intact and remoulded soil. In Proc. 3rd Int. Conf. on Site Characterization, Taipei, pp. 10871092. Taylor & Francis.Google Scholar
Masri, R. & Durban, D. 2009 Deep penetration analysis with dynamic cylindrical cavitation fields. Intl J. Impact Engng 36, 830841.Google Scholar
Medeiros, C. J. Jr 2002 Low cost anchor system for flexible risers in deep waters. In Proc. Offshore Technology Conf.Google Scholar
Melosh, H. J. 1989 Impact Cratering: A Geological Process. Oxford University Press.Google Scholar
Mitchell, J. K. & Soga, K. 2005 Fundamentals of Soil Behavior, 3rd edn. John Wiley and Sons.Google Scholar
Oldroyd, J. G. 1947 A rational formulation of the equations of plastic flow for a Bingham solid. Math. Proc. Cambridge 43, 100105.Google Scholar
O’Loughlin, C. D., Randolph, M. F. & Richardson, M. 2004 Experimental and theoretical studies of deep penetrating anchors. In Proc. Offshore Technology Conf.Google Scholar
O’Loughlin, C. D., Richardson, M. D., Randolph, M. F. & Gaudin, C. 2013 Penetration of dynamically installed anchors in clay. Géotechnique 63, 909919.Google Scholar
Omidvar, M., Iskander, M. & Bless, S. 2014 Response of granular media to rapid penetration. Intl J. Impact Engng 66, 6082.Google Scholar
Poncelet, J. V. 1835 Rapport sur un memoire de MM Piobert et Morin. Mem. Acad. Sci 15, 5591.Google Scholar
Prager, W. 1961 Introduction to Mechanics of Continua. Ginn and Co.Google Scholar
Robins, B. 1742 New principles of gunnery. In Mathematical Tracts of the Late Benjamin Robins, Vol. 1 (ed. Wilson, J.), p. 341. J. Nourse.Google Scholar
Rubin, M. B. 2016 Essential physics of target inertia in penetration problems missed by cavity expansion models. Intl J. Impact Engng 98, 97104.Google Scholar
Sabetamal, H., Carter, J. P., Nazem, M. & Sloan, S. W. 2016 Coupled analysis of dynamically penetrating anchors. Comput. Geotech. 77, 2644.Google Scholar
Satapathy, S. 2001 Dynamic spherical cavity expansion in brittle ceramics. Intl J. Solids Struct. 38, 58335845.Google Scholar
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S. et al. 2010 The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 12141218.Google Scholar
Sharma, I. & Huppert, H. E. 2008 A model for deep penetrating anchors. In Topical Problems in Solid Mechanics (ed. Gupta, N. K. & Manzhirov, A. V.), pp. 181194. Elite.Google Scholar
Tate, A. 1967 A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids 15, 387399.Google Scholar
Tate, A. 1969 Further results in the theory of long rod penetration. J. Mech. Phys. Solids 17, 141150.Google Scholar
Tate, A. 1978 A simple hydrodynamic model for the strain field produced in a target by the penetration of a high speed long rod projectile. Intl J. Engng Sci. 16, 845858.Google Scholar
Tate, A. 1986a Long rod penetration models. Part I. A flow field model for high speed long rod penetration. Intl J. Mech. Sci. 28, 535548.Google Scholar
Tate, A. 1986b Long rod penetration models. Part II. Extensions to the hydrodynamic theory of penetration. Intl J. Mech. Sci. 28, 599612.Google Scholar
Warren, T. L. 2016 The effect of target inertia on the penetration of aluminum targets by rigid ogive-nosed long rods. Intl J. Impact Engng 91, 613.Google Scholar
Yarin, A. L., Rubin, M. B. & Roisman, I. V. 1995 Penetration of a rigid projectile into an elastic–plastic target of finite thickness. Intl J. Impact Engng 16, 801831.Google Scholar