Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T02:26:26.614Z Has data issue: false hasContentIssue false

Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method

Published online by Cambridge University Press:  30 July 2014

B. Min Yun
Affiliation:
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA
L. P. Dasi
Affiliation:
Department of Mechanical Engineering, Colorado State University, Campus Delivery 1374, Fort Collins, CO 80523, USA
C. K. Aidun
Affiliation:
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
A. P. Yoganathan*
Affiliation:
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
*
Email address for correspondence: [email protected]

Abstract

Prosthetic heart valves have been widely used to replace diseased or defective native heart valves. Flow through bileaflet mechanical heart valves (BMHVs) have previously demonstrated complex phenomena in the vicinity of the valve owing to the presence of two rigid leaflets. This study aims to accurately capture the complex flow dynamics for pulsatile flow through a 23 mm St Jude Medical (SJM) Regent™ BMHV. The lattice-Boltzmann method (LBM) is used to simulate pulsatile flow through the valve with the inclusion of reverse leakage flow at very high spatiotemporal resolution that can capture fine details in the pulsatile BMHV flow field. For higher-Reynolds-number flows, this high spatiotemporal resolution captures features that have not been observed in previous coarse resolution studies. In addition, the simulations are able to capture with detail the features of leaflet closing and the asymmetric b-datum leakage jet during mid-diastole. Novel flow physics are visualized and discussed along with quantification of turbulent features of this flow, which is made possible by this parallelized numerical method.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K. & Clausen, J. R. 2010 Lattice Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.CrossRefGoogle Scholar
Aidun, C. K. & Lu, Y. 1995 Lattice Boltzmann simulation of solid particles suspended in fluid. J. Stat. Phys. 81 (1), 4961.Google Scholar
Aidun, C. K., Lu, Y. & Ding, E. J. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.CrossRefGoogle Scholar
Antiga, L. & Steinman, D. A. 2009 Rethinking turbulence in blood. Biorheology 46 (2), 7781.Google Scholar
Black, M. M. & Drury, P. J. 1994 Mechanical and other problems of artificial valves. Pathol. Devices 86, 127159.CrossRefGoogle ScholarPubMed
Borazjani, I., Ge, L. & Sotiropoulos, F. 2008 Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227 (16), 75877620.Google Scholar
Borazjani, I. & Sotiropoulos, F. 2010 The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. Trans. ASME J. Biomech. Engng 132, 111005.CrossRefGoogle Scholar
Brown, M. L., Parsheh, M. & Aidun, C. K. 2006 Turbulent flow in a converging channel: effect of contraction and return to isotropy. J. Fluid Mech. 560, 437448.CrossRefGoogle Scholar
Dasi, L. P., Ge, L., Simon, H. A., Sotiropoulos, F. & Yoganathan, A. P. 2007 Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19, 067105.CrossRefGoogle Scholar
Dasi, L. P., Murphy, D. W., Glezer, A. & Yoganathan, A. P. 2008 Passive flow control of bileaflet mechanical heart valve leakage flow. J. Biomech. 41 (6), 11661173.CrossRefGoogle ScholarPubMed
De Tullio, M. D., Cristallo, A., Balaras, E. & Verzicco, R. 2010 Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622, 259290.CrossRefGoogle Scholar
Ding, E. J. & Aidun, C. K. 2003 Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J. Stat. Phys. 112 (3), 685708.CrossRefGoogle Scholar
Dumont, K., Vierendeels, J., Kaminsky, R., van Nooten, G., Verdonck, P. & Bluestein, D. 2007 Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. Trans. ASME J. Biomech. Engng 129, 558565.Google Scholar
Dyverfeldt, P., Hope, M. D., Tseng, E. E. & Saloner, D. 2013 Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC: Cardiovasc. Imag. 6 (1), 6471.Google Scholar
Ellis, J. T., Healy, T. M., Fontaine, A. A., Saxena, R. & Yoganathan, A. P. 1996 Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing. J. Heart Valve Disease 5 (6), 591599.Google ScholarPubMed
Fallon, A. M., Shah, N., Marzec, U. M., Warnock, J. N., Yoganathan, A. P. & Hanson, S. R. 2006 Flow and thrombosis at orifices simulating mechanical heart valve leakage regions. Trans. ASME J. Biomech. Engng 128, 3039.CrossRefGoogle ScholarPubMed
Ge, L., Dasi, L. P., Sotiropoulos, F. & Yoganathan, A. P. 2008 Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Engng 36 (2), 276297.CrossRefGoogle ScholarPubMed
Giersiepen, M., Wurzinger, L. J., Opitz, R. & Reul, H. 1990 Estimation of shear stress-related blood damage in heart valve prostheses – in vitro comparison of 25 aortic valves. Intl J. Artif. Organs 13 (5), 300306.Google Scholar
Grigioni, M., Caprari, P., Tarzia, A. & D’Avenio, G. 2005 Prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects. J. Biomech. 38 (8), 15571565.CrossRefGoogle ScholarPubMed
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program, Report CTR-S88, vol. 1, pp. 193208. Center For Turbulence Research.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kaldararova, M., Balazova, E., Tittel, P., Stankovicova, I., Brucknerova, I. & Masura, J. 2007 Echocardiographic measurements of the aorta in normal children and young adults. Bratisl. Lek. Listy 108 (10–11), 437441.Google Scholar
Kameneva, M. V., Burgreen, G. W., Kono, K., Repko, B., Antaki, J. F. & Umezu, M. 2004 Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50 (5), 418423.Google Scholar
Keating, B., Vahala, G., Yepez, J., Soe, M. & Vahala, L. 2007 Entropic lattice Boltzmann representations required to recover Navier–Stokes flows. Phys. Rev. E 75 (3), pp. 036712-1 to 036712-11.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177 (1), 133166.CrossRefGoogle Scholar
Krishnan, S., Udaykumar, H. S., Marshall, J. S. & Chandran, K. B. 2006 Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann. Biomed. Engng 34 (10), 15191534.Google Scholar
Ladd, A. J. C. 1994 Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.Google Scholar
Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle–fluid suspensions. J. Stat. Phys. 104 (5), 11911251.Google Scholar
Lamson, T. C., Rosenberg, G., Geselowitz, D. B., Deutsch, S., Stinebring, D. R., Frangos, J. A. & Tarbell, J. M. 1993 Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J. 39 (3), M626.Google Scholar
Liu, J. S., Lu, P. C. & Chu, S. H. 2000 Turbulence characteristics downstream of bileaflet aortic valve prostheses. Trans. ASME J. Biomech. Engng 122 (2), 118124.Google Scholar
Murphy, D. W., Dasi, L. P., Vukasinovic, J., Glezer, A. & Yoganathan, A. P. 2010 Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays. Trans. ASME J. Biomech. Engng 132, 071011.Google Scholar
Pees, C., Glagau, E., Hauser, J. & Michel-Behnke, I. 2013 Reference values of aortic flow velocity integral in 1193 healthy infants, children, and adolescents to quickly estimate cardiac stroke volume. Pediatr. Cardiol. 34, 11941200.Google Scholar
Pettersen, M. D., Du, W., Skeens, M. E. & Humes, R. A. 2008 Regression equations for calculation of $\langle i\rangle z\langle /i\rangle $ scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J. Am. Soc. Echocardiogr. 21 (8), 922934.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Sallam, A. M. & Hwang, N. H. 1984 Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21 (6), 783797.Google Scholar
Simon, H. A., Ge, L., Sotiropoulos, F. & Yoganathan, A. P. 2010 Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Ann. Biomed. Engng 38 (11), 32953310.CrossRefGoogle ScholarPubMed
Sluysmans, T. & Colan, S. D. 2005 Theoretical and empirical derivation of cardiovascular allometric relationships in children. J. Appl. Physiol. 99 (2), 445457.Google Scholar
Tambasco, M. & Steinman, D. A. 2003 Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann. Biomed. Engng 31 (9), 10541065.CrossRefGoogle ScholarPubMed
Wu, J., Yun, B. M., Fallon, A. M., Hanson, S. R., Aidun, C. K. & Yoganathan, A. P. 2011 Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Ann. Biomed. Engng 39 (2), 897910.Google Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207 (1), 531586.CrossRefGoogle Scholar
Yoganathan, A. P., Fogel, M., Gamble, S., Morton, M., Schmidt, P., Secunda, J., Vidmar, S. & Nido, P. 2013 A new paradigm for obtaining marketing approval for pediatric-sized prosthetic heart valves. J. Thorac. Cardiovasc. Surg. 146 (4), 879886.Google Scholar
Yoganathan, A., Leo, H., Travis, B. & Teoh, S. 2003 Heart valve bioengineering. In Encyclopedia of Comprehensive Structural Integrity (CSI), pp. 795796. Elsevier Science.Google Scholar
Yun, B. M.2014 Simulations of pulsatile flow through bileaflet mechanical heart valves using a suspension flow model: To assess blood damage. PhD thesis, Georgia Institute of Technology.Google Scholar
Yun, B. M., Dasi, L. P., Aidun, C. K. & Yoganathan, A. P. 2014a Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 743, 170201.CrossRefGoogle Scholar
Yun, B. M., McElhinney, D. B., Arjunon, S., Mirabella, L., Aidun, C. K. & Yoganathan, A. P. 2014b Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. J. Biomech. (in press) 10.1016/j.jbiomech.2014.06.018.Google Scholar
Yun, B. M., Wu, J., Simon, H. A., Arjunon, S., Sotiropoulos, F., Aidun, C. K. & Yoganathan, A. P. 2012 A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Engng 40 (7), 14681485.Google Scholar
Zilberman, M. V., Khoury, P. R. & Kimball, R. T. 2005 Two-dimensional echocardiographic valve measurements in healthy children: gender-specific differences. Pediatr. Cardiol. 26 (4), 356360.CrossRefGoogle ScholarPubMed