Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:06:43.975Z Has data issue: false hasContentIssue false

Higher approximations in boundary-layer theory Part 1. General analysis

Published online by Cambridge University Press:  28 March 2006

Milton Van Dyke
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, California

Abstract

Prandtl's boundary-layer theory is embedded as the first step in a systematic scheme of successive approximations for finding an asymptotic solution for viscous flow at large Reynolds number. The technique of inner and outer expansions is used to treat this singular-perturbation problem. Only analytic semi-infinite bodies free of separation are considered. The second approximation is analysed in detail for steady laminar flow past plane or axisymmetric solid bodies. Attention is restricted to low speeds and small temperature changes, so that the velocity field is that for an incompressible fluid, the temperature field being calculated subsequently. The additive effects are distinguished of longitudinal curvature, transverse curvature, external vorticity, external stagnation enthalpy gradient, and displacement speed. The effect of changing co-ordinates is examined, and the behaviour of the boundary-layer solution far downstream discussed. Application to specific problems will be made in subsequent papers.

Type
Research Article
Copyright
© 1962 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Erdelyi, A. 1961 Atti Accad. Sci. Torino, 95, 1.
Ferri, A. & Libby, P. A. 1954 J. Aero. Sci. 21, 130.
Glauert, M. B. & Lighthill, M. J. 1955 Proc. Roy. Soc. A, 230, 188.
Goldstein, S. 1960 Lectures on Fluid Mechanics. New York: Interscience.
Hayes, W. D. 1956 Jet Prop. 26, 270.
Kaplun, S. 1954 Z. angew. Math. Mech. 5, 111.
Kaplun, S. 1957 J. Math. Mech. 6, 595.
Kaplun, S. & Lagerstrom, P. A. 1957 J. Math. Mech. 6, 585.
Lagerstrom, P. A. 1957 J. Math. Mech. 6, 605.
Lagerstrom, P. A. 1962 Laminar flow. Sect. B, vol. IV of High Speed Aerodynamics and Jet Propulsion. Princeton University Press.
Lagerstrom, P. A. & Cole, J. D. 1955 J. Rat. Mech. Anal. 4, 817.
Millikan, C. B. 1932 Trans. Amer. Soc. Mech. Engrs, 54, 29.
Murphy, J. S. 1953 J. Aero. Sci. 20, 338.
Ovchinnikov, O. N. 1960 Zh. Tekh. Fiz. 30, 627 (English transl.: Soviet Physics-Technical Physics 5, 590.
Prandtl, L. 1935 Aerodynamic Theory, 3, 90. Berlin: Springer.
Proudman, I. & Pearson, J. R. A. 1957 J. Fluid Mech. 2, 237.
Rott, N. & Lenard, M. 1959 J. Aero/Space Sci. 26, 542.
Seban, R. A. & Bond, R. 1951 J. Aero. Sci. 18, 671.
Stewartson, K. 1955 Quart. Appl. Math. 13, 113.
Stewartson, K. 1957 J. Math. Phys. 36, 173.
Ting, L. 1960 Phys. Fluids, 3, 78.
Van Dyke, M. D. 1962 Hypersonic Flow Research. New York: Academic Press.