Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T11:23:00.362Z Has data issue: false hasContentIssue false

Heteroclinic path to spatially localized chaos in pipe flow

Published online by Cambridge University Press:  18 August 2017

N. B. Budanur*
Affiliation:
IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria Kavli Institute for Theoretical Physics, UC Santa Barbara, Santa Barbara, CA 93106, USA
B. Hof
Affiliation:
IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
*
Email address for correspondence: [email protected]

Abstract

In shear flows at transitional Reynolds numbers, localized patches of turbulence, known as puffs, coexist with the laminar flow. Recently, Avila et al. (Phys. Rev. Lett., vol. 110, 2013, 224502) discovered two spatially localized relative periodic solutions for pipe flow, which appeared in a saddle-node bifurcation at low Reynolds number. Combining slicing methods for continuous symmetry reduction with Poincaré sections for the first time in a shear flow setting, we compute and visualize the unstable manifold of the lower-branch solution and show that it extends towards the neighbourhood of the upper-branch solution. Surprisingly, this connection even persists far above the bifurcation point and appears to mediate the first stage of the puff generation: amplification of streamwise localized fluctuations. When the state-space trajectories on the unstable manifold reach the vicinity of the upper branch, corresponding fluctuations expand in space and eventually take the usual shape of a puff.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502.CrossRefGoogle ScholarPubMed
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192196.CrossRefGoogle ScholarPubMed
Budanur, N. B. & Cvitanović, P. 2017 Unstable manifolds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto–Sivashinsky system. J. Stat. Phys. 167, 636655.CrossRefGoogle Scholar
Budanur, N. B., Cvitanović, P., Davidchack, R. L. & Siminos, E. 2015 Reduction of the SO(2) symmetry for spatially extended dynamical systems. Phys. Rev. Lett. 114, 084102.CrossRefGoogle ScholarPubMed
Chantry, M., Willis, A. P. & Kerswell, R. R. 2014 Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow. Phys. Rev. Lett. 112, 164501.CrossRefGoogle ScholarPubMed
Chossat, P. & Lauterbach, R. 2000 Methods in Equivariant Bifurcations and Dynamical Systems. World Scientific.CrossRefGoogle Scholar
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G. 2015 Chaos: Classical and Quantum. Niels Bohr Inst.Google Scholar
Ding, X., Chaté, H., Cvitanović, P., Siminos, E. & Takeuchi, K. A. 2016 Estimating the dimension of the inertial manifold from unstable periodic orbits. Phys. Rev. Lett. 117, 024101.CrossRefGoogle ScholarPubMed
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.CrossRefGoogle Scholar
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365376.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941598.CrossRefGoogle ScholarPubMed
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Pure Appl. Maths 1, 303322.CrossRefGoogle Scholar
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 701714.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.CrossRefGoogle Scholar
Lemoult, G., Shi, L., Avila, K., Jalikop, S. V., Avila, M. & Hof, B. 2016 Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12, 254258.CrossRefGoogle Scholar
de Lozar, A., Mellibovsky, F., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108, 214502.CrossRefGoogle Scholar
Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103, 054502.CrossRefGoogle ScholarPubMed
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett. 99, 074502.CrossRefGoogle ScholarPubMed
Ritter, P., Mellibovsky, F. & Avila, M. 2016 Emergence of spatio-temporal dynamics from exact coherent solutions in pipe flow. New J. Phys. 18, 083031.CrossRefGoogle Scholar
Schneider, T. M., Eckhardt, B. & Yorke, J. 2007 Turbulence, transition, and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. 2017 Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett. 118, 114501.CrossRefGoogle ScholarPubMed
Trefethen, L. N. & Bau, D. 1997 Numerical Linear Algebra. SIAM.CrossRefGoogle Scholar
van Veen, L. & Kawahara, G. 2011 Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett. 107, 114501.CrossRefGoogle ScholarPubMed
van Veen, L., Kawahara, G. & Atsushi, M. 2011 On matrix-free computation of 2D unstable manifolds. SIAM J. Sci. Comput. 33, 2544.CrossRefGoogle Scholar
Willis, A. P. 2017 The Openpipeflow Navier–Stokes solver. SoftwareX 6, 124127.CrossRefGoogle Scholar
Willis, A. P., Short, K. Y. & Cvitanović, P. 2016 Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E 93, 022204.Google Scholar