Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:08:11.920Z Has data issue: false hasContentIssue false

Heteroclinic bifurcations in a simple model of double-diffusive convection

Published online by Cambridge University Press:  26 April 2006

E. Knobloch
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720, USA
M. R. E. Proctor
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK
N. O. Weiss
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Abstract

Two-dimensional thermosolutal convection is perhaps the simplest example of an idealized fluid dynamical system that displays a rich variety of dynamical behaviour which is amenable to investigation by a combination of analytical and numerical techniques. The transition to chaos found in numerical experiments can be related to behaviour near a multiple bifurcation of codimension three. The resulting third-order normal form equations provide a rational approximation to the governing partial differential equations and thereby confirm that temporal chaos is present in thermosolutal convection. The complex dynamics is associated with a heteroclinic orbit in phase space linking a pair of saddle-foci with eigenvalues satisfying Shil'nikov's criterion. The same bifurcation structure occurs in a truncated fifth-order model and numerical experiments confirm that similar behaviour extends to a significant region of parameter space.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnéodo, A., Coullet, P. H. & Spiegel, E. A., 1985 The dynamics of triple convection. Geophys. Astrophys. Fluid Dyn. 31, 148.Google Scholar
Arnéodo, A. & Thual, O. 1985 Direct numerical simulations of a triple convection problem versus normal form predictions. Phys. Lett. 109A, 367373.Google Scholar
Arnol'D, V. I.: 1983 Geometrical Methods in the Theory of Ordinary Differential Equations. Springer.
Bernoff, A. J.: 1986 Transitions from order in convection. Ph.D. thesis, University of Cambridge.
Coullet, P. H. & Spiegel, E. A., 1983 Amplitude equations for systems with competing instabilities. SIAM J. Appl. Maths. 43, 776821.Google Scholar
Curry, J. H., Herring, J. R., Loncaric, J. & Orszag, S. A., 1984 Order and disorder in two- and three-dimensional Bénard convection. J. Fluid Mech. 147, 138.Google Scholar
Da Costa, L. N., Knobloch, E. & Weiss, N. O., 1981 Oscillations in double-diffusive convection. J. Fluid Mech. 109, 2543.Google Scholar
Dangelmayr, G., Armbruster, D. & Neveling, M., 1985 A codimension three bifurcation for the laser with saturable absorber. Z. Phys. B 59, 365370.Google Scholar
Elgin, J. N. & Garza, J. B. Molina 1988 On the travelling wave solutions of the Maxwell–Bloch equations. In Structure, Coherence and Chaos in Dynamical Systems (ed. P. Christiansen & R. D. Parmentier), pp. 553562. Manchester University Press.
Glendinning, P. A. & Sparrow, C. T., 1984 Local and global behaviour near homoclinic orbits. J. Statist. Phys. 35, 645696.Google Scholar
Guckenheimer, J. & Holmes, P., 1986 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (2nd printing). Springer.
Huppert, H. E. & Moore, D. R., 1976 Nonlinear double-diffusive convection. J. Fluid Mech. 78, 821854.Google Scholar
Knobloch, E., Deane, A. E., Toomre, J. & Moore, D. R., 1986a Doubly diffusive waves. Contemp. Maths 56, 203216.Google Scholar
Knobloch, E., Moore, D. R., Toomre, J. & Weiss, N. O., 1986b Transitions to chaos in two-dimensional double-diffusive convection. J. Fluid Mech. 166, 409448.Google Scholar
Knobloch, E. & Proctor, M. R. E. 1981 Nonlinear periodic convection in double-diffusive systems. J. Fluid Mech. 108, 291316.Google Scholar
Knobloch, E. & Proctor, M. R. E. 1988 The double Hopf bifurcation with 2:1 resonance. Proc. R. Soc. Lond. A 415, 6190.Google Scholar
Knobloch, E. & Weiss, N. O., 1983 Bifurcations in a model of magnetoconvection. Physica 9D, 379407.Google Scholar
Knobloch, E., Weiss, N. O. & Da Costa, L. N. 1981 Oscillatory and steady convection in a magnetic field. J. Fluid Mech. 113, 153186.Google Scholar
Lorenz, E. N.: 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141.Google Scholar
Marcus, P. S.: 1981 Effects of truncation in modal representations of thermal convection. J. Fluid Mech. 103, 241255.Google Scholar
Marzec, C. J. & Spiegel, E. A., 1980 Ordinary differential equations with strange attractors. SIAM J. Appl. Maths 38, 403421.Google Scholar
Moore, D. R. & Weiss, N. O., 1973 Two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 58, 289312.Google Scholar
Moore, D. R. & Weiss, N. O., 1990 Dynamics of double convection. Phil. Trans. R. Soc. Lond. A 332, 121134.Google Scholar
Moore, D. R., Weiss, N. O. & Wilkins, J. M., 1990a Symmetry-breaking in thermosolutal convection. Phys. Lett. A 147, 209214.Google Scholar
Moore, D. R., Weiss, N. O. & Wilkins, J. M., 1990b The reliability of numerical experiments: transitions to chaos in thermosolutal convection. Nonlinearity 3, 9971014.Google Scholar
Moore, D. R., Weiss, N. O. & Wilkins, J. M., 1991 Asymmetric oscillations in thermosolutal convection. J. Fluid Mech. 233, 561585.Google Scholar
Moore, D. W. & Spiegel, E. A., 1966 A thermally excited nonlinear oscillator. Astrophys. J. 143, 871887.Google Scholar
Nagata, M., Proctor, M. R. E. & Weiss, N. O. 1990 Transitions to asymmetry in magnetoconvection. Geophys. Astrophys. Fluid Dyn. 51, 211241.Google Scholar
Proctor, M. R. E.: 1981 Steady subcritical thermohaline convection. J. Fluid Mech. 105, 507521.Google Scholar
Proctor, M. R. E. & Holyer, J. Y. 1986 Planform selection in salt fingers. J. Fluid Mech. 168, 241253.Google Scholar
Proctor, M. R. E. & Weiss, N. O. 1982 Magnetoconvection. Rep. Prog. Phys. 45, 13171379.Google Scholar
Proctor, M. R. E. & Weiss, N. O. 1990 Normal forms and chaos in thermosolutal convection. Nonlinearity 3, 619637.Google Scholar
Rehberg, I. & Ahlers, G., 1986 Codimension two bifurcation in a convection experiment. Contemp. Maths 56, 277282.Google Scholar
Rucklidge, A. M.: 1992 Chaos in models of double convection. J. Fluid Mech. 237, 209229.Google Scholar
Shil'Nikov, L. P.: 1965 A case of the existence of a countable number of periodic motions. Sov. Math. Dokl 6, 163166.Google Scholar
Shirtcliffe, T. G. L.: 1969 An experimental investigation of thermosolutal convection at marginal stability. J. Fluid Mech. 35, 671688.Google Scholar
Sparrow, C. T.: 1982 The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer.
Spiegel, E. A.: 1987 Chaos: a mixed metaphor for turbulence. Proc. R. Soc. Lond. A 413, 8795.Google Scholar
Tresser, C.: 1984 About some theorems by L. P. Shil'nikov. Ann. Inst. H. Poincaré 40, 440461.Google Scholar
Veronis, G.: 1965 On finite amplitude instability in thermohaline convection. J. Mar. Res. 23, 117.Google Scholar
Weiss, N. O.: 1987 Dynamics of convection. Prog. R. Soc. Lond. A 413, 7185.Google Scholar
Wiggins, S.: 1988 Global Bifurcations and Chaos. Springer.