Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T13:57:55.203Z Has data issue: false hasContentIssue false

A Helmholtz decomposition of structure functions and spectra calculated from aircraft data

Published online by Cambridge University Press:  03 December 2014

Erik Lindborg*
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
*
Email address for correspondence: [email protected]

Abstract

Longitudinal and transverse structure functions, $D_{ll}=\langle {\it\delta}u_{l}{\it\delta}u_{l}\rangle$ and $D_{tt}=\langle {\it\delta}u_{t}{\it\delta}u_{t}\rangle$, can be calculated from aircraft data. Here, ${\it\delta}$ denotes the increment between two points separated by a distance $r$, $u_{l}$ and $u_{t}$ the velocity components parallel and perpendicular to the aircraft track respectively and $\langle \,\rangle$ an average. Assuming statistical axisymmetry and making a Helmholtz decomposition of the horizontal velocity, $\boldsymbol{u}=\boldsymbol{u}_{r}+\boldsymbol{u}_{d}$, where $\boldsymbol{u}_{r}$ is the rotational and $\boldsymbol{u}_{d}$ the divergent component of the velocity, we derive expressions relating the structure functions $D_{rr}=\langle {\it\delta}\boldsymbol{u}_{r}\boldsymbol{\cdot }{\it\delta}\boldsymbol{u}_{r}\rangle$ and $D_{dd}=\langle {\it\delta}\boldsymbol{u}_{d}\boldsymbol{\cdot }{\it\delta}\boldsymbol{u}_{d}\rangle$ to $D_{ll}$ and $D_{tt}$. Corresponding expressions are also derived in spectral space. The decomposition is applied to structure functions calculated from aircraft data. In the lower stratosphere, $D_{rr}$ and $D_{dd}$ both show a nice $r^{2/3}$-dependence for $r\in [2,20]\ \text{km}$. In this range, the ratio between rotational and divergent energy is a little larger than unity, excluding gravity waves as the principal agent behind the observations. In the upper troposphere, $D_{rr}$ and $D_{dd}$ show no clean $r^{2/3}$-dependence, although the overall slope of $D_{dd}$ is close to $2/3$ for $r\in [2,400]\ \text{km}$. The ratio between rotational and divergent energy is approximately three for $r<100\ \text{km}$, excluding gravity waves also in this case. We argue that the possible errors in the decomposition at scales of the order of 10 km are marginal.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augier, P. & Lindborg, E. 2013 A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci. 70, 22932308.Google Scholar
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 44104428.2.0.CO;2>CrossRefGoogle Scholar
Brune, S. & Becker, E. 2013 Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci. 70, 231247.Google Scholar
Bühler, O., Callies, J. & Ferrari, R. 2014 Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech. 756, 10071026.CrossRefGoogle Scholar
Cencini, M., Muratori-Ginanneschi, P. & Vulpiani, A. 2011 Nonlinear superposition of direct and inverse cascades in two-dimensional turbulence forced at large and small scales. Phys. Rev. Lett. 107, 174502.CrossRefGoogle ScholarPubMed
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871094.Google Scholar
Cho, J. Y. N. & Lindborg, E. 2001 Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 1. Observations. J. Geophys. Res. 106 (D10), 1022310232.Google Scholar
Cho, Y. N. & Newell, R. E. 1999 Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes. J. Geophys. Res. 104 (D13), 1629716308.Google Scholar
Deusebio, E., Augier, P. & Lindborg, E. 2014 Third-order structure functions in rotating and stratified turbulence: a comparison between numerical, analytical and observational results. J. Fluid Mech. 755, 294313.Google Scholar
Hamilton, K., Takahashi, Y. O. & Ohfuchi, W. O. 2008 Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res. 113 (D18), D18110.Google Scholar
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40 (3), 749761.2.0.CO;2>CrossRefGoogle Scholar
Lindborg, E. 1999 Can the atmospheric energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259288.CrossRefGoogle Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550 (1), 207242.Google Scholar
Lindborg, E. 2007 Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci. 64, 10171025.Google Scholar
Lindborg, E. & Brethouwer, G. 2007 Stratified turbulence forced in rotational and divergent modes. J. Fluid Mech. 586, 83108.Google Scholar
Marenco, A., Thouret, V., Nédeléc, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon, P., Law, K., Pyle, J., Poschmann, G., Wrede, R., Von Hume, C. & Cook, T. 1998 Measurement of ozone and water vapour by Airbus in-service aircraft: the MOZAIC airborne program, an overview. J. Geophys. Res. 103 (D19), 2563125642.Google Scholar
Nastrom, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42, 950960.Google Scholar
Skamarock, W. C., Park, S. H., Klemp, J. B. & Snyder, C. 2014 Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci. 71, 43694381.CrossRefGoogle Scholar
Waite, M. & Snyder, C. 2013 Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci. 70, 12421256.Google Scholar
Waite, M. & Snyder, C. 2014 Comments on ‘Indications of stratified turbulence in a mechanistic GCM’. J. Atmos. Sci. 71, 854857.Google Scholar
Xia, H., Byrne, H., Falkovich, D. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7, 321324.Google Scholar