Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T19:52:30.611Z Has data issue: false hasContentIssue false

Helicity distributions and transfer in turbulent channel flows with streamwise rotation

Published online by Cambridge University Press:  06 April 2022

Changping Yu
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, PR China
Running Hu
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing100049, PR China
Zheng Yan*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing100094, PR China
Xinliang Li*
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing100049, PR China
*
Email addresses for correspondence: [email protected]; [email protected]
Email addresses for correspondence: [email protected]; [email protected]

Abstract

Helicity is a quadratic inviscid conservative quantity in three-dimensional turbulent flows and is crucial for turbulent system evolution. Helicity effects have mainly been highlighted over the past few decades to explore the intrinsic mechanism of turbulent flows, while the statistical characteristics of helicity itself are nearly absent in general anisotropic turbulent flows. In this paper, we investigate the helicity statistics in turbulent channel flows with streamwise rotation at moderate rotation numbers ($Ro_{\tau }=7.5,15$ and 30) and Reynolds numbers ($Re_{\tau }=180$ and 395), including their spatial and scale distributions, anisotropy and cross-scale transfer. The appearance of a mean secondary flow in the spanwise direction corresponds to a mean streamwise vorticity, which indicates the presence of a high-helicity distribution. Numerical results reveal a regular helicity profile along the wall-normal direction, and a new peak is found in the near-wall region around $y^+=6$ of the streamwise or spanwise helicity profiles. The inter-scale helicity transfer is analysed by the filtering method, and the numerical consequences reveal that the second channel of the helicity cascade we proposed previously is dominant in contrast to the first channel. The rotation effects are explored by comparing the numerical results obtained under different rotation numbers. With increasing rotation number, more helical structures in the near-wall regions are present, with peaks of helicity profiles and fluxes coming closer to the wall. With a higher Reynolds number, their amplitudes are larger and scale-space transfer is strengthened. These systematic numerical analyses uncover the helicity distributions and transfer in wall-bounded turbulent flows.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

del Alamo, J.C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41L44.CrossRefGoogle Scholar
del Alamo, J.C., Jiménez, J., Zandonade, P. & Moser, R.D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.CrossRefGoogle Scholar
Alkishriwi, N., Meinke, M. & Schröder, W. 2008 Large-eddy simulation of streamwise-rotating turbulent channel flow. Comput. Fluids 37, 786792.CrossRefGoogle Scholar
Avsarkisov, V., Calvo, S.H., Oberlack, M. & García-Galache, J.P. 2014 Turbulent plane Couette flow at moderately high Reynolds number. J. Fluid Mech. 751, R1.CrossRefGoogle Scholar
Berger, S.A., Talbot, L. & Yao, L.S. 1983 Flow in curved pipes. Annu. Rev. Fluid Mech. 15, 461512.CrossRefGoogle Scholar
Betchov, R. 1961 Semi-isotropic turbulence and helicoidal flows. Phys. Fluids 4, 925926.CrossRefGoogle Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108, 164501.CrossRefGoogle ScholarPubMed
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 5374.CrossRefGoogle Scholar
Brissaud, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16, 13661367.CrossRefGoogle Scholar
Buzzicotti, M., Linkmann, M., Aluie, H., Biferale, L., Brasseur, J. & Meneveau, C. 2018 Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence. J. Turbul. 19, 167197.CrossRefGoogle Scholar
Carbone, M. & Bragg, A.D. 2020 Is vortex stretching the main cause of the turbulent energy cascade? J. Fluid Mech. 883, R2.CrossRefGoogle Scholar
Chen, Q.N., Chen, S.Y. & Eyink, G.L. 2003 a The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15, 361374.CrossRefGoogle Scholar
Chen, Q.N., Chen, S.Y., Eyink, G.L. & Holm, D.D. 2003 b Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90, 214503.CrossRefGoogle ScholarPubMed
Chin, R.C., Vinuesa, R., Örlü, R., Cardesa, J.I., Noorani, A., Chong, M.S. & Schlatter, P. 2020 Backflow events under the effect of secondary flow of Prandtl's first kind. Phys. Rev. Fluids 5, 074606.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E., Jiménez, J. & Casciola, C.M. 2016 Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417436.CrossRefGoogle Scholar
Dai, Y.J., Huang, W.X. & Xu, C.X. 2019 Coherent structures in streamwise rotating channel flow. Phys. Fluids 31, 021204.Google Scholar
Deusebio, E. & Lindborg, E. 2014 Helicity in the Ekman boundary layer. J. Fluid Mech. 755, 654671.CrossRefGoogle Scholar
Domaradzki, J.A., Liu, W., Härtel, C. & Kleiser, L. 1994 Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids 6, 15831599.CrossRefGoogle Scholar
Dunn, D.C. & Morrison, J.F. 2003 Anisotropy and energy flux in wall turbulence. J. Fluid Mech. 491, 353378.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.CrossRefGoogle Scholar
Goto, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605, 355366.CrossRefGoogle Scholar
Graham, J., et al. 2016 A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul. 17, 181215.CrossRefGoogle Scholar
Härtel, C. & Kleiser, L. 1997 Galilean invariance and filtering dependence of near-wall grid-scale/subgrid-scale interactions in large-eddy simulation. Phys. Fluids 9, 473475.CrossRefGoogle Scholar
Härtel, C. & Kleiser, L. 1998 Analysis and modelling of subgrid-scale motions in near-wall turbulence. J. Fluid Mech. 356, 327352.CrossRefGoogle Scholar
Härtel, C., Kleiser, L., Unger, F. & Friedrich, R. 1994 Subgrid-scale energy transfer in the near-wall region of turbulent flows. Phys. Fluids 6, 31303143.CrossRefGoogle Scholar
Hiejima, T. 2020 Helicity effects on inviscid instability in Batchelor vortices. J. Fluid Mech. 897, A37.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $Re_{\tau }=2003$. Phys. Fluids 18, 011702.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20, 101511.CrossRefGoogle Scholar
Hüttl, T.J. & Friedrich, R. 2001 Direct numerical simulation of turbulent flows in curved and helically coiled pipes. Comput. Fluids 30, 591605.CrossRefGoogle Scholar
Jiménez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Leslie, D.C. & Quarini, G.L. 1979 The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech. 91, 6591.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re_{\tau }= 4200$. Phys. Fluids 26, 011702.CrossRefGoogle Scholar
Marati, N., Casciola, C.M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Martin, M.P., Piomelli, U. & Candler, G.V. 2000 Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn. 13, 361376.Google Scholar
Masuda, S., Fukuda, S. & Nagata, M. 2008 Instabilities of plane Poiseuille flow with a streamwise system rotation. J. Fluid Mech. 603, 189206.CrossRefGoogle Scholar
Modesti, D., Pirozzoli, S., Orlandi, P. & Grasso, F. 2018 On the role of secondary motions in turbulent square duct flow. J. Fluid Mech. 847, R1.CrossRefGoogle Scholar
Moffatt, H.K. 1969 Degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.CrossRefGoogle Scholar
Moffatt, H.K. 2017 Helicity-invariant even in a viscous fluid. Science 357, 448449.CrossRefGoogle Scholar
Moffatt, H.K. & Tsinober, A. 1992 Helicity in laminar and turbulence flow. Annu. Rev. Fluid Mech. 24, 281312.CrossRefGoogle Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_{\tau }=590$. Phys. Fluids 11, 943945.CrossRefGoogle Scholar
Nguyen, Q. & Papavassiliou, D.V. 2020 Using helicity to investigate scalar transport in wall turbulence. Phys. Rev. Fluids 5, 062601.CrossRefGoogle Scholar
Noorani, A., El Khoury, G.K. & Schlatter, P. 2013 Evolution of turbulence characteristics from straight to curved pipes. Intl J. Heat Fluid Flow 41, 1626.CrossRefGoogle Scholar
Oberlack, M., Cabot, W., Reif, B.A.P. & Weller, T. 2006 Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation. J. Fluid Mech. 562, 383403.CrossRefGoogle Scholar
Orlandi, P. & Pirozzoli, S. 2020 Turbulent flows in square ducts: physical insight and suggestions for turbulence modellers. J. Turbul. 21, 125.CrossRefGoogle Scholar
Pelz, R.B., Yakhot, V., Orszag, S.A., Shtilman, L. & Levich, E. 1985 Velocity-vorticity patterns in turbulent flow. Phys. Rev. Lett. 54, 25052508.CrossRefGoogle ScholarPubMed
Pieri, A.B., Godeferd, F.S., Cambon, C., Dubrulle, B. & Thalabard, S. 2014 Cross-helicity in rotating homogeneous shear-stratified turbulence. Phys. Rev. Lett. 112, 114501.CrossRefGoogle ScholarPubMed
Piomelli, U., Cabot, W.H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids 3, 17661771.CrossRefGoogle Scholar
Piomelli, U., Yu, Y. & Adrian, R.J. 1996 Subgrid-scale energy transfer and near-wall turbulence structure. Phys. Fluids 8, 215224.CrossRefGoogle Scholar
Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F. 2018 Turbulence and secondary motions in square duct flow. J. Fluid Mech. 840, 631655.CrossRefGoogle Scholar
Plunian, F., Teimurazov, A., Stepanov, R. & Verma, M.K. 2020 Inverse cascade of energy in helical turbulence. J. Fluid Mech. 895, A13.CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent Flows. IOP Publishing.Google Scholar
Pouquet, A. & Mininni, P.D. 2010 The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics. Phil. Trans. R. Soc. Lond. 368, 16351662.Google ScholarPubMed
Povitsky, A. 2017 Three-dimensional flow with elevated helicity in driven cavity by parallel walls moving in perpendicular directions. Phys. Fluids 29, 083601.CrossRefGoogle Scholar
Recktenwald, I., Alkishriwi, N. & Schröder, W. 2009 PIV–LES analysis of channel flow rotating about the streamwise axis. Eur. J. Mech. (B/Fluids) 28, 677688.CrossRefGoogle Scholar
Recktenwald, I., Weller, T., Schröder, W. & Oberlack, M. 2007 Comparison of direct numerical simulations and particle-image velocimetry data of turbulent channel flow rotating about the streamwise axis. Phys. Fluids 19, 085114.CrossRefGoogle Scholar
Rogers, M.M. & Moin, P. 1987 Helicity fluctuations in incompressible turbulent flows. Phys. Fluids 30, 26622671.CrossRefGoogle Scholar
Scheeler, M.W., van Rees, W.M., Kedia, H., Kleckner, D. & Irvine, W.T.M. 2017 Complete measurement of helicity and its dynamics in vortex tubes. Science 357, 487491.CrossRefGoogle ScholarPubMed
Vallis, G.K. 2017 Atmospheric And Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Wall, D.P. & Nagata, M. 2006 Nonlinear secondary flow through a rotating channel. J. Fluid Mech. 564, 2555.CrossRefGoogle Scholar
Wang, J.C., Shi, Y.P., Wang, L.P., Xiao, Z.L., He, X.T. & Chen, S.Y. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.CrossRefGoogle Scholar
Weller, T. & Oberlack, M. 2006 DNS of a turbulent channel flow with streamwise rotation – investigation on the cross flow phenomena. In Direct and Large-Eddy Simulation VI (ed. E. Lamballais, R. Friedrich, B.J. Geurts & O. Métais), ERCOFTAC, vol. 10, pp. 241–248. Springer.CrossRefGoogle Scholar
Wu, H. & Kasagi, N. 2004 Effects of arbitrary directional system rotation on turbulent channel flow. Phys. Fluids 16, 979990.CrossRefGoogle Scholar
Xia, Z.H., Shi, Y.P. & Chen, S.Y. 2016 Direct numerical simulation of turbulent channel flow with spanwise rotation. J. Fluid Mech. 788, 4256.CrossRefGoogle Scholar
Yan, Z., Li, X.L., Wang, J.C. & Yu, C.P. 2019 Effect of pressure on joint cascade of kinetic energy and helicity in compressible helical turbulence. Phys. Rev. E 99, 033114.CrossRefGoogle ScholarPubMed
Yan, Z., Li, X.L., Yu, C.P., Wang, J.C. & Chen, S.Y. 2020 Dual channels of helicity cascade in turbulent flows. J. Fluid Mech. 894, R2.CrossRefGoogle Scholar
Yang, Z.X., Deng, B.Q., Wang, B.C. & Shen, L. 2018 The effects of streamwise system rotation on pressure fluctuations in a turbulent channel flow. Phys. Fluids 30, 091701.CrossRefGoogle Scholar
Yang, Z.X., Deng, B.Q., Wang, B.C. & Shen, L. 2020 a On the self-constraint mechanism of the cross-stream secondary flow in a streamwise-rotating channel. Phys. Fluids 32, 105115.CrossRefGoogle Scholar
Yang, Z.X., Deng, B.Q., Wang, B.C. & Shen, L. 2020 b Sustaining mechanism of Taylor–Görtler-like vortices in a streamwise-rotating channel flow. Phys. Rev. Fluids 5, 044601.CrossRefGoogle Scholar
Yang, Y.T., Su, W.D. & Wu, J.Z. 2010 Helical-wave decomposition and applications to channel turbulence with streamwise rotation. J. Fluid Mech. 662, 91122.CrossRefGoogle Scholar
Yang, Z.X. & Wang, B.C. 2018 Capturing Taylor–Görtler vortices in a streamwise-rotating channel at very high rotation numbers. J. Fluid Mech. 838, 658689.CrossRefGoogle Scholar
Yang, Y.T. & Wu, J.Z. 2012 Channel turbulence with spanwise rotation studied using helical wave decomposition. J. Fluid Mech. 692, 137152.CrossRefGoogle Scholar
Yokoi, N. & Yoshizawa, A. 1993 Statistical analysis of the effects of helicity in inhomogeneous turbulence. Phys. Fluids 5, 464477.CrossRefGoogle Scholar