Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T04:00:54.927Z Has data issue: false hasContentIssue false

Heat-flow experiments in liquid 4He with a variable cylindrical geometry

Published online by Cambridge University Press:  21 April 2006

H. Gao
Affiliation:
Duke University, Durham, NC 27706, USA
G. Metcalfe
Affiliation:
Duke University, Durham, NC 27706, USA Present address: Department of Physics, University of Maryland, College Park, MD 20742, USA.
T. Jung
Affiliation:
Duke University, Durham, NC 27706, USA
R. P. Behringer
Affiliation:
Duke University, Durham, NC 27706, USA

Abstract

This paper first describes an apparatus for measuring the Nusselt number N versus the Rayleigh number R of convecting normal liquid 4He layers. The most important feature of the apparatus is its ability to provide layers of different heights d, and hence different aspect ratios [Gcy ]. The horizontal cross-section of each layer is circular, and [Gcy ] is defined by [Gcy ] = D/2d where D is the diameter of the layer. We report results for 2.4 [les ] [Gcy ] [les ] 16 and for Prandtl numbers Pr spanning 0.5 [lsim ] Pr [lsim ] 0.9 These results are presented in terms of the slope N1 = RcdN/dR evaluated just above the onset of convection at Rc. We find that N1 is only a slowly increasing function of [Gcy ] in the range 6 [lsim ] [Gcy ] [lsim ] 16, and that it has a value there which is quite close to 0.72. This value of N1 is in good agreement with variational calcuations by Ahlers et al. (1981) pertinent to parallel convection rolls in cylindrical geometry. Particularly for [Gcy ] [lsim ] 6, we find additional small-scale structure in N1 associated with changes in the number of convection rolls with changing [Gcy ]. An additional test of the linearzied hydrodynamics is given by measurements of Rc. We find good agreement between theory and our data for Rc.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. 1971 Heat capacity near the superfluid transition in 4He at saturated vapor pressure. Phys. Rev. A 3, 696–716.
Ahlers, G. 1974 Low temperature studies of the Rayleigh-Bénard instability and turbulence. Phys. Rev. Lett. 33, 11851188.Google Scholar
Ahlers, G. 1975 The Rayleigh-Bénard instability at helium temperatures. In Fluctuations, Instabilities and Phase Transitions (ed. T. Riste), pp. 181–193. Plenum.
Ahlers, G. 1980 Onset of convection and turbulence in a cylindrical container. In Systems far from Equilibrium (ed. L. Garrido), pp. 143–161. Springer.
Ahlers, G. & Behringer, R. P. 1978a The Rayleigh-Bénard instability and the evolution of turbulence. Prog. Theor. Phys. Suppl. 64, 186201.Google Scholar
Ahlers, G. & Behringer, R. P. 1978b Evolution of turbulence from the Rayleigh-Bénard instability. Phys. Rev. Lett. 40, 712716.Google Scholar
Ahlers, G., Cannell, D. S. & Steinberg, V. 1985 Time dependence of flow patterns near the convective threshold in a cylindrical container. Phys. Rev. Lett. 54, 13731376.Google Scholar
Ahlers, G., Cross, M. C., Hohenberg, P. C. & Safran, S. 1981 The amplitude equation near the convective threshold: applications to time-dependent heating experiments. J Fluid Mech. 110, 297334.Google Scholar
Ahlers, G., Hohenberg, P. C. & Kornblit, A. 1982 Nonlinear renormalization-group analysis of the thermal conductivity of 4He for T TlD. Phys. Rev. B25, 31363166.Google Scholar
Ahlers, G. & Walden, R. W. 1980 Turbulence near onset of convection. Phys. Rev. Lett. 44, 445448.Google Scholar
Barenghi, C. F., Lucas, P. G. & Donnelly, R. J. 1981 Cubic spline fits to thermodynamic and transport parameters of liquid 4He above the LD transition. J. Low Temp. Phys. Rev. Lett. 44, 491503.Google Scholar
Behringer, R. P. 1985 Rayleigh-Bénard convection and turbulence in liquid helium. Rev. Mod. Phys. 57, 657688.Google Scholar
Behringer, R. P., Agosta, C., Jan, J. S. & Shaumeyer, J. N. 1980 Time dependent Rayleigh-Bénard convection and instrumental attenuation, Phys. Lett. 80A, 273276.Google Scholar
Behringer, R. P. & Ahlers, G. 1977 Heat transport and critical slowing down near the Rayleigh-Bénard instability in cylindrical containers. Phys. Lett. 62 A, 329331.Google Scholar
Behringer, R. P. & Ahlers, G. 1982 Heat transport and temporal evolution of fluid flow near the Rayleigh-Bénard instability in cylindrical containers. J. Fluid Mech. 125, 219258.Google Scholar
Behringer, R. P., Gao, H. & Shaumeyer, J. N. 1983 Time-dependence in Rayleigh-Bénard convection with a variable cylindrical geometry. Phys. Rev. Lett. 50, 11991202.Google Scholar
Behringer, R. P., Shaumeyer, J. N., Jan, J. S., Clark, C. A. & Agosta, C. 1982 Turbulent onset in moderately large aspect ratios. Phys. Rev. A26, 37233726.Google Scholar
Boussinesq, J. 1903 Théorie Analytique de la Chaleur, vol. 2. Gauthier-Villas.
Brown, S. N. & Stewartson, K. 1978 On finite amplitude Bénard convection in a cylindrical container. Proc. R. Soc. Lond. A360, 455469.Google Scholar
Brown, S. N. & Stewartson, K. 1979 On the finite amplitude Bénard convection in a cylindrical container. SIAM J. Appl. Maths 36, 573586.Google Scholar
Busse, F. H. 1967 The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 13, 625649.Google Scholar
Charlson, G. S. & Sani, R. L. 1970 Thermoconvective instability in a bounded cylindrical fluid layer. Intl. J. Heat Mass Transfer 13, 14791496.Google Scholar
Charlson, G. S. & Sani, R. L. 1971 On thermoconvective instability in a bounded cylindrical fluid layer. Intl. J. Heat Mass Transfer 14, 21572160.Google Scholar
Charlson, G. S. & Sani, R. L. 1975 Finite amplitude axisymmetric thermoconvective flows in a bounded cylindrical layer of fluid. J. Fluid Mech. 71, 209229.Google Scholar
Clever, R. M. & Busse, F. H. 1974 Transition to time-dependent convection. J. Fluid Mech. 65, 625645.Google Scholar
Croquette, V., Mory, M. & Schosseler, F. 1983 Rayleigh-Bénard convective structures in a cylindrical container. J. Phys. Paris 44, 293301.Google Scholar
Cross, M. C. 1982 Ingredients of a theory of convective textures close to onset. Phys. Rev. A25, 10651076.Google Scholar
Daniels, P. G. 1977 The effect of distant sidewalls on the transition to finite amplitude Bénard convection. Proc. R. Soc. Lond. A358, 173197.Google Scholar
De Long, L. E., Symko, O. G. & Wheatley, J. G. 1971 Continuously operating 4He evaporation refrigerator. Rev. Sci. Instrum. 42, 147150.Google Scholar
Dijk, H. van, Durieux, M., Clement, J. R. & Logan, J. K. 1960 The 1958 4He Scale of Temperatures. Nat. Bur. Stand. Monograph no. 10.
Gao, H. & Behringer, R. P. 1984 Onset of convective time-dependence in cylindrical containers. Phys. Rev. 30, 28372839.Google Scholar
Hall, P. & Walton, I. C. 1977 The smooth transition to a convective regime in a two-dimensional box. Proc. R. Soc. Lond. A358, 199221.Google Scholar
Heutmaker, M. S., Fraenkel, P. N. & Gollub, J. P. 1985 Convection patterns: time evolution of the wave-vector field. Phys. Rev. Lett. 54, 13691372.Google Scholar
Hoard, C. Q., Robertson, C. R. & Acrivos, A. 1970 Experiments on cellular structure in Bénard convection. Intl. J. Heat Mass Transfer 13, 849856.Google Scholar
Kelly, R. E. & Pal, D. 1978 Thermal convection with spatiality periodic boundary conditions: resonant wavelength excitation. J. Fluid Mech. 86, 433456.Google Scholar
Kerrisk, J. F. & Keller, W. E. 1969 Thermal convectivity of fluid 3He and 4He at temperatures between 1.5 and 4.0 K and for pressures up to 34 atmospheres. Phys. Rev. 177, 341351.Google Scholar
Kirchartz, K. R., Müller, U., Oertel, H. & Zierep, J. 1981 Axisymmetric and nonaxisymmetric convection in a cylindrical container. Acta Mechanica 40, 181194.Google Scholar
Koschmieder, E. L. & Pallas, S. G. 1974 Heat transfer through a shallow, horizontal convecting fluid layer. Intl. J. Heat Mass Transfer 17, 9911002.Google Scholar
Libchaber, A. & Maurer, J. 1978 Local probe in a Rayleigh-Bénard experiment in liquid helium. J. Phys. Paris Lett. 39, L369L372.Google Scholar
Libchaber, A. & Maurer, J. 1980 Une experience de Rayleigh-Bénard de géometrie reduite: multiplication, accrochage et démultiplication de fréquences. J. Phys. Paris Colloq. 3, C41C51.Google Scholar
Maurer, J. & Libchaber, A. 1979 Rayleigh-Bénard experiment in liquid helium: frequency locking and the onset of turbulence. J. Phys. Paris Lett. 40, L419422.Google Scholar
Maurer, J. & Libchaber, A. 1980 Effect of the Prandtl number on the onset of turbulence in liquid 4He. J. Phys Paris Lett. 41, 515518.Google Scholar
Mueller, K. H., Ahlers, G. & Pobell, F. 1976 Thermal expansion coefficient, scaling and universality near the superfluid transition of 4He. Phys. Rev. B 14, 20962118.Google Scholar
Newell, A. C. & Whitehead, J. A. 1969 Finite-bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279303.Google Scholar
Oberbeck, A. 1879 Uber die Warmeleitung der Flussigkeiten bei der Berucksichtigung der Stromungen infolge von Temperatur-Differenzen. Ann. Phys. Chem. 7, 271292.Google Scholar
Protenhauer, J. M. 1984 The influence of rotation on the stability and heat transfer of Bénard convection in helium - I. Ph.D. dissertation University of Oregon, Eugene. OR, USA.
Pfotenhauer, J. M. & Donnelly, R. J. 1985 Heat transfer in liquid helium. Adv. Heat Trans. 17, 65158.Google Scholar
Pfotenhauer, J. M., Lucas, P. G. J. & Donnelly, R. J. 1984 Stability and heat transfer of rotating cryogens. Part 2. Effects of rotation on heat-transfer and properties of convection in liquid 4He. J. Fluid Mech. 145, 239252.Google Scholar
Pocheau, A., Croquette, V. & Le Gal, P. 1985 Turbulence in a cylindrical container near threshold. Phys. Rev. Lett. 55, 1095.Google Scholar
Schlüter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.Google Scholar
Segel, L. A. 1969 Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203224.Google Scholar
Shaumeyer, J. N. & Behringer, R. P. 1986 Unexpected observation in measurements of transport coefficients in 3He-4He mixtures near T lD. Phys. Rev. B 33, 35533555.Google Scholar
Somerscales, E. F. C. & Dougherty, T. S. 1970 Observed flow patterns at the initiation of convection in a horizontal liquid layer heated from below. J. Fluid Mech. 42, 755768.Google Scholar
Stork, K. & Müller, U. 1975 Convection in boxes: an experimental investigation in vertical cylinders and annuli. J. Fluid Mech. 71, 231240.Google Scholar
Sydoriak, S. G., Sherman, R. H. & Roberts, T. R. 1964 The T62 3He temperature scale. Natur. Bur. Stand. J. Res. 68A, 547579.Google Scholar
Walden, R. W. & Ahlers, G. 1981 Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid Mech. 109, 89114.Google Scholar