Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:15:06.534Z Has data issue: false hasContentIssue false

Heat transport and temporal evolution of fluid flow near the Rayleigh-Bénard instability in cylindrical containers

Published online by Cambridge University Press:  20 April 2006

R. P. Behringer
Affiliation:
Department of Physics, Duke University, Durham, NC 27706
Guenter Ahlers
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106

Abstract

First this paper describes in detail an apparatus for heat-transport measurements in shallow horizontal layers of fluid at low temperatures. Then high-precision results of convective heat transport as a function of the Rayleigh number R are presented for cylindrical cells of aspect ratio L = 2.08,4.72 and 57. The present paper concentrates on the long-time behaviour of Boussinesq systems. Non-Boussinesq effects, transient effects near the convective onset, and time-dependent states are described elsewhere (Walden & Ahlers 1981 Ahlers et al. 1981 Ahlers 1980b and references therein). The measurements show that the convective onset near the critical Rayleigh number Rc is sharp within the experimental resolution of about 0.1 % of the Nusselt number N even in laterally finite containers. Values of R and of the initial slopes of N(R), are obtained and compared with predictions for different flow patterns. Over a wider range of R and for L = 57 and 4.72, N was found within experimental resolution to be a unique, continuous function of R For L = 2.08, hysteretic transitions are revealed by N(R) near R ≈ 3 and R ≈ 10. For L = 4.72, the effect of impulsive heating was studied and revealed complicated, long-lived, but surprisingly repro- ducible transients.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. 1971a Heat capacity near the superfluid transition in 4He at saturated vapor pressure. Phys. Rev. A 3, 696716.Google Scholar
Ahlers, G. 1971b On the viscosity of 4He near the superfluid transition. Phys. Lett. 37 A, 151–152.Google Scholar
Ahlers, G. 1974 Low temperature studies of the Rayleigh–-Bénard instability and turbulence. Phys. Rev. Lett. 33, 11851188.Google Scholar
Ahlers, G. 1975 The Rayleigh–-Bénard instability at helium temperatures. In Fluctuations, Instabilities and Phase Transitions (ed. T. Riste), pp. 181193. Plenum.
Ahlers, G. 1976 Experiments near the superfluid transition in 4He and 3He–-4He mixtures. In The Physics of Liquid Helium, Part I (ed. K. H. Bennemann & J. B. Ketterson), pp. 85206. Wiley.
Ahlers, G. 1978 Thermal conductivity of 4He vapor as a function of density. J. Low Temp. Phys. 31, 429439.Google Scholar
Ahlers, G. 1980a Effect of departures from the Oberbeck–-Boussinesq approximation on the heat transport of horizontal convecting fluid layers. J. Fluid Mech. 98, 137148.Google Scholar
Ahlers, G. 1980b Onset of convection and turbulence in a cylindrical container. In Systems far from Equilibrium (ed. L. Garrido), pp. 143161. Springer.
Ahlers, G. & Behringer, R. P. 1978a The Rayleigh–-Bénard instability and the evolution of turbulence. Prog. Theor. Phys. Suppl. 64, 186201.Google Scholar
Ahlers, G. & Behringer, R. P. 1978b Evolution of turbulence from the Rayleigh–-Bénard instability. Phys. Rev. Lett. 40, 712716.Google Scholar
Ahlers, G., Cross, M. C., Hohenberg, P. C. & Safran, S. 1981 The amplitude equation near the convective threshold: applications to time-dependent heating experiments. J. Fluid Mech. 110, 297334.Google Scholar
Ahlers, G., Hohenberg, P. C. & Kornblit, A. 1982 Nonlinear renormalization-group analysis of the thermal conductivity of 4He for T TlD. Phys. Rev. B 25, 31363166.Google Scholar
Ahlers, G. & Walden, R. W. 1980 Turbulence near onset of convection. Phys. Rev. Lett. 44, 445448.Google Scholar
Barenghi, C. F., Lucas, P. G. J. & Donnelly, R. J. 1981 Cubic spline fits to thermodynamic and transport parameters of liquid 4He above the LD transition. J. Low Temp. Phys. 44, 491503.Google Scholar
Becker, E. W., Misenta, R. & Schmeissner, F. 1954a Die Zähigkeit von gasförmigem He3 and He4 zwischen 1, 3 K and 4, 2 K. Z. Phys. 137, 126136.Google Scholar
Becker, E. W., Misenta, R. & Schmeissner, F. 1954b Viscosity of gaseous He3 and He4 between 13k and 42k. Phys. Rev. 93, 244245.Google Scholar
Becker, E. W. & Misenta, R. 1955 Die Zähigkeit von HD and He3 zwischen 14 K and 20 K. Z. Phys. 140, 535539.Google Scholar
Behringer, R. P., Agosta, C., Jan, J. S. & Schaumeyer, J. N. 1980 Time dependent Rayleigh–-Bénard convection and instrumental attenuation. Phys. Lett. 80A, 273–276.Google Scholar
Behringer, R. P. & Ahlers, G. 1977 Heat transport and critical slowing down near the Rayleigh–-Bénard instability in cylindrical containers. Phys. Lett. 62 A, 329–331.Google Scholar
Behringer, R. P., Shaumeyer, J. N., Jan, J. S., Clark, C. A. & Agosta, C. 1982 Turbulent onset in moderately large aspect ratios. Phys. Rev. A (in press).
Bénard, H. 1900 Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. Pure Appl. 11, 12611271, 1309–1328.Google Scholar
Bénard, H. 1901 Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Ann. Chim. Phys. 23, 62144.Google Scholar
Boussinesq, J. 1903 Théorie Analytique de la Chaleur, vol. 2. Gauthier-Villas.
Brown, S. N. & Stewartson, K. 1978 On finite amplitude Bénard convection in a cylindrical container. Proc. R. Soc. Lond. A 360, 455469.Google Scholar
Busse, F. H. 1967a The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625649.Google Scholar
Busse, F. H. 1967b Non-stationary finite amplitude convection. J. Fluid Mech. 28, 223239.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Charlson, G. S. & Sani, R. L. 1970 Thermoconvective instability in a bounded cylindrical fluid layer. Int. J. Heat Mass Transfer 13, 14791496.Google Scholar
Charlson, G. S. & Sani, R. L. 1971 On thermoconvective instability in a bounded cylindrical fluid layer. Int. J. Heat Mass Transfer 14, 21572160.Google Scholar
Charlson, G. S. & Sani, R. L. 1975 Finite amplitude axisymmetric thermoconvective flows in a bounded cylindrical layer of fluid. J. Fluid Mech. 71, 209229.Google Scholar
Cross, M. C., Daniels, P. G., Hohenberg, P. C. & Siggia, E. D. 1980 Effect of sidewalls in wavenumber selection in Rayleigh–-Bénard convection. Phys. Rev. Lett. 45, 898901.Google Scholar
Cross, M. C., Daniels, P. G., Hohenberg, P. C. & Siggia, E. D. 1983 Phase-winding solutions in a finite container above the convective threshold. J. Fluid Mech. (in press).Google Scholar
Daniels, P. G. 1977 The effect of distant sidewalls on the transition to finite amplitude Bénard convection. Proc. R. Soc. Lond. A 358, 173197.Google Scholar
Delong, L. E., Symko, O. G. & Wheatley, J. G. 1971 Continuously operating 4He evaporation refrigerator. Rev. Sci. lustrum. 42, 147150.Google Scholar
Dijk, H. Van, Durieux, M., Clement, J. R. & Logan, J. K. 1960 The ‘1958 4He Scale of Temperatures’. Nat. Bur. Standards Monograph no. 10.
Goodwin, J. 1968 The pressure dependence of viscosity in liquid helium. Ph.d. thesis, University of Washington.
Greenside, H. S., Ahlers, G., Hohenberg, P. C. & Walden, R. W. 1982 A simple stochastic model Tor the onset of turbulence in Rayleigh–-Bénard convection. Physica D (to be published).
Hall, P. & Walton, I. C. 1977 The smooth transition to a convective regime in a two-dimensional box. Proc. R. Soc. Lond. A 358, 199221.Google Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1967 Molecular Theory of Gases and Liquids, chap. 8.2. Wiley.
Keller, W. E. 1969 Helium-3 and Helium-4, p. 86. Plenum.
Kelly, R. E. & Pal, D. 1978 Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation. J. Fluid Mech. 86, 433456.Google Scholar
Kirchartz, K. R., Müller, U., Oertel, H. & Zierep, J. 1981 Axisymmetric and non-axisymmetric convection in a cylindrical container. Acta Mechanica 40, 181194.Google Scholar
Koschmieder, E. L. 1974 Bénard convection. Adv. Chem. Phys. 26, 177212.Google Scholar
Koschmieder, E. L. & Pallas, S. G. 1974 Heat transfer through a shallow horizontal convecting fluid layer. Int. J. Heat Mass Transfer 17, 9911002.Google Scholar
Krishnamurti, R. 1968 Finite amplitude convection with changing mean temperature. Part 2. An experimental test of the theory. J. Fluid Mech. 33, 457463.Google Scholar
Krishnamurti, R. 1970a On the transition to turbulent convection. Part 1. The transition from two- to three-dimensional flow. J. Fluid Mech. 42, 295–307.
Krishnamurti, R. 19706 On the transition to turbulent convection. Part 2. The transition to time-dependent flow. J. Fluid Mech. 42, 309320.Google Scholar
Krishnamurti, R. 1973 Some further studies on the transition to turbulent convection. J. Fluid Mech. 60, 285303.Google Scholar
Lee, G., Lucas, P. & Tyler, A. 1979 Bénard instability measurements in 3He-4He mixtures near their lambda temperatures. Phys. Lett. 75 A, 81.Google Scholar
Libchaber, A. & Maurer, J. 1978 Local probe in a Rayleigh–-Bénard experiment in liquid helium. J. Physique Lett. 39, L369L372.Google Scholar
Libchaber, A. & Maurer, J. 1980 Une expérience de Rayleigh–-Bénard de géometrie reduite: multiplication, accrochage et démultiplication de fréquences. J. Physique Coll. C 3, 4151.Google Scholar
Libchaber, A. & Maurer, J. 1981 A Rayleigh–-Bénard experiment: helium in a small box. Proc. NATO Conf., Geilo, Norway. To be published.
Malkus, W. V. R. 1954 Discrete transitions in turbulent convection. Proc. R. Soc. Lond. A 225, 185195.Google Scholar
Maurer, J. & Libchaber, A. 1979 Rayleigh–-Bénard experiment in liquid helium: frequency locking and the onset of turbulence. J. Physique Lett. 40, 419.Google Scholar
Maurer, J. & Libchaber, A. 1980 Effect of the Prandtl number on the onset of turbulence in liquid 4He. J. Physique Lett. 41, 515.Google Scholar
Mueller, K. H., Ahlers, G. & Pobell, F. 1976 Thermal expansion coefficient, scaling, and universality near the superfluid transition of 4He. Phys. Rev. B 14, 20962118.Google Scholar
Nield, D. A. 1968 The Rayleigh-jeffreys problem with boundary slab of finite conductivity. J. Fluid Mech. 32, 393398.Google Scholar
Oberbeck, A. 1879 Über die Wärmeleitung der Flüssigkeiten bei der Berücksichtigung der Stromungen infolge von Temperatur-differenzen. Ann. Phys. Chem. 7, 271292.Google Scholar
Pallas, S. G. 1972 Heat transfer and wavelength measurement for axisymmetric flow of a fluid heated from below. Ph.d. thesis, University of Texas.
Rayleigh, Lord 1916 Phil. Mag. 32, 529546.
Reiss, E. L. 1977 Imperfect bifurcation. In Application of Bifurcation Theory, pp. 3771. Academic.
Rossby, H. T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.Google Scholar
Schluter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.Google Scholar
Schmidt, R. J. & Milverton, S. W. 1935 On the instability of a fluid when heated from below. Proc. R. Soc. Lond. A 152, 586594.Google Scholar
Schmidt, R. J. & Saunders, O. A. 1938 On the motion of a fluid heated from below. Proc. R. Soc. Lond. A 165, 216228.Google Scholar
Silveston, P. L. 1958 Warmedurchgang in waagerechten Fliissigkeitsschichten. Forsch. Ing. Wes. 24, 2932, 59–69.Google Scholar
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. R. 1964 Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18, 513528.Google Scholar
Steinberg, V. 1980 Undamped second sound waves in the He3–hee mixture heated from below. Phys. Rev. Lett. 45, 20502052.Google Scholar
Steinberg, V. 1981a Stationary convective instability in a superfluid He3–-He4 mixture. I. Phys. Rev. A 24, 975987.Google Scholar
Steinberg, V. 1981b Oscillatory convection instability in a superfluid He3-He4 mixture. II. Phys. Rev. A 24, 25842594.Google Scholar
Stork, K. & Muller, U. 1975 Convection in boxes: an experimental investigation in vertical cylinders and annuli. J. Fluid Mech. 71, 231240.Google Scholar
Straty, G. C. & Adams, E. D. 1969 Highly sensitive capacitive pressure gauge. Rev. Sci. lnstrum. 40, 13931397.Google Scholar
Tavantzis, J., Reiss, E. L. & Matkowsky, B. 1978 On the smooth transition to convection. SIAM J. Appl. Math. 34, 322337.Google Scholar
Threlfall, D. C. 1975 Free convection in low-temperature gaseous helium. J. Fluid Mech. 67, 1728.Google Scholar
Tjerkstra, H. H. 1952 The influence of pressure on the viscosity of liquid helium. I. Physica 18, 853861.Google Scholar
Van Degrift, C. T. 1974 Dielectric constant, density, and expansion coefficient of liquid 4He at vapor pressure below 44 K. Ph.D. thesis, University of California, Irvine.
Van Itterbeek, A., Schapink, F. W., Van den Berg, G. J. & Van Beek, H. J. M. 1953 Measurements of the viscosity of He-gas at liquid helium temperatures as a function of temperature and pressure. Physica 19, 11581162.Google Scholar
Walden, R. W. & Ahlers, G. 1981 Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid Mech. 109, 89114.Google Scholar
Warkentin, P. A., Haucke, H. J. & Wheatley, J. C. 1980 Convection in dilute solutions of 3He in superfluid 4He. Phys. Rev. Lett. 45, 918921.Google Scholar
Willis, G. E. & Deardorff, J. W. 1967 Confirmation and renumbering of the discrete heat flux transitions of Malkus. Phys. Fluids 10, 18611866.Google Scholar
Willis, G. E., Deardorff, J. W. & Somerville, R. C. J. 1972 Roll-diameter dependence in Rayleigh convection and its effect upon the heat flux. J. Fluid Mech. 54, 351367.Google Scholar
Wonsiewicz, B. D., Storm, A. R. & Sieber, J. D. 1978 Microcomputer control of apparatus, machinery, and experiments. Bell Syst. Tech. J. 57, 22092232.Google Scholar