Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T14:27:49.714Z Has data issue: false hasContentIssue false

Gyrotactic swimmer dispersion in pipe flow: testing the theory

Published online by Cambridge University Press:  07 March 2017

Ottavio A. Croze*
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
Rachel N. Bearon
Affiliation:
Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
Martin A. Bees
Affiliation:
Department of Mathematics, University of York, York YO10 5DD, UK
*
Email address for correspondence: [email protected]

Abstract

Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display non-zero drift and effective diffusivity that is non-monotonic with Péclet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga Dunaliella salina, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained D. salina and provide a preliminary comparison with predictions of a non-zero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss the implications of our results for algal dispersion in industrial photobioreactors.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 6777.Google Scholar
Bearon, R. N. 2013 Helical swimming can provide robust upwards transport for gravitactic single-cell algae; a mechanistic model. J. Math. Biol. 66, 13411359.CrossRefGoogle ScholarPubMed
Bearon, R. N., Bees, M. A. & Croze, O. A. 2012 Biased swimming cells do not disperse in pipes as tracers: a population model based on microscale behaviour. Phys. Fluids 24 (12), 121902.CrossRefGoogle Scholar
Bearon, R. N., Hazel, A. L. & Thorn, G. J. 2011 The spatial distribution of gyrotactic swimming micro-organisms in laminar flow fields. J. Fluid Mech. 680, 602635.CrossRefGoogle Scholar
Bees, M. A. & Croze, O. A. 2010 Dispersion of biased micro-organisms in a fluid flowing through a tube. Proc. R. Soc. Lond. A 466, 10671070.Google Scholar
Bees, M. A. & Croze, O. A. 2014 Mathematics for streamlined biofuel production from unicellular algae. Biofuels 5, 5365.CrossRefGoogle Scholar
Bees, M. A., Hill, N. A. & Pedley, T. J. 1998 Analytical approximations for the orientation distribution of small dipolar particles in steady shear flows. J. Math. Biol. 36, 269298.CrossRefGoogle Scholar
Crocker, J. C. & Grier, D. G. 1996 Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298310.CrossRefGoogle Scholar
Croze, O. A., Ashraf, E. E. & Bees, M. A. 2010 Sheared bioconvection in a horizontal tube. Phys. Biol. 7, 046001.CrossRefGoogle Scholar
Croze, O. A. & Peaudecerf, F. 2016 Geoffrey Ingram Taylor and the physics of swimming. CavMag 15, 45.Google Scholar
Croze, O. A., Sardina, G., Ahmed, M., Bees, M. A. & Brandt, L. 2013 Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. J. R. Soc. Interface 10, 20121041.CrossRefGoogle ScholarPubMed
De Lillo, F., Cencini, M., Durham, W. M., Barry, M., Stocker, R., Climent, E. & Boffetta, G. 2014 Turbulent fluid acceleration generates clusters of gyrotactic microorganisms. Phys. Rev. Lett. 112, 044502.CrossRefGoogle ScholarPubMed
Dennisenko, P. & Lukaschuk, S. 2007 Velocity profiles and discontinuities propagation in a pipe flow of suspension of motile microorganisms. Phys. Lett. A 362, 298304.CrossRefGoogle Scholar
Doi, M. & Edwards, S. F. 1986 The Theory of Polymer Dynamics. Oxford University Press.Google Scholar
Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 208, 10940.CrossRefGoogle Scholar
Durham, W. M., Climent, E., Barry, M., Lillo, F. D., Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4, 2148.CrossRefGoogle ScholarPubMed
Durham, W. M., Kessler, J. O. & Stocker, R. 2009 Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323, 10671070.CrossRefGoogle ScholarPubMed
Durham, W. M. & Stocker, R. 2012 Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu. Rev. Marine Sci. 4 (1), 177207.CrossRefGoogle ScholarPubMed
Eppley, R. W., Holmes, R. W. & Strickland, J. D. H. 1967 Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1, 191208.CrossRefGoogle Scholar
Frankel, I. & Brenner, M. 1991 Generalized Taylor dispersion in unbounded shear flows. J. Fluid Mech. 230, 147181.CrossRefGoogle Scholar
Frankel, I. & Brenner, M. 1993 Taylor dispersion of orientable Brownian particles in unbounded homogeneous shear flows. J. Fluid Mech. 255, 129156.CrossRefGoogle Scholar
Garcia, X., Rafaï, S. & Peyla, P. 2013 Light control of the flow of phototactic microswimmer suspensions. Phys. Rev. Lett. 110, 138106.CrossRefGoogle ScholarPubMed
Hill, N. A. & Bees, M. A. 2002 Taylor dispersion of gyrotactic swimming micro-organisms in a linear flow. Phys. Fluids 14, 25982605.CrossRefGoogle Scholar
Hill, N. A. & Häder, D.-P. 1997 A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol. 186, 503526.CrossRefGoogle ScholarPubMed
Hill, N. A. & Pedley, T. J. 2005 Bioconvection. Fluid Dyn. Res. 37, 120.CrossRefGoogle Scholar
Hope, A., Croze, O. A., Poon, W. C. K., Bees, M. A. & Haw, M. D. 2016 Resonant alignment of microswimmer trajectories in oscillatory shear flows. Phys. Rev. Fluids 1, 051201(R).CrossRefGoogle Scholar
Hubbard, J. B. & Douglas, J. F. 1993 Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E 47, R2983R2986.Google ScholarPubMed
Hwang, Y. & Pedley, T. J. 2014a Bioconvection under uniform shear: linear stability analysis. J. Fluid Mech. 738, 522562.CrossRefGoogle Scholar
Hwang, Y. & Pedley, T. J. 2014b Stability of downflowing gyrotactic microorganism suspensions in a two-dimensional vertical channel. J. Fluid Mech. 749, 750777.CrossRefGoogle Scholar
Kessler, J. O. 1985 Hydrodynamic focusing of motile algal cells. Nature 313, 218220.CrossRefGoogle Scholar
Kessler, J. O. 1986 Individual and collective fluid dynamics of swimming cells. J. Fluid Mech. 173, 191205.CrossRefGoogle Scholar
Lider, D. R.(Ed.) 2004 Handbook of Chemistry and Physics. CRC Press.Google Scholar
Manela, A. & Frankel, I. 2003 Generalized Taylor dispersion in suspensions of gyrotactic swimming micro-organisms. J. Fluid Mech. 490, 99127.CrossRefGoogle Scholar
Marchetti, M. C., Joanny, J. F., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143.CrossRefGoogle Scholar
Pedley, T. J. & Kessler, J. O. 1990 A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212, 155182.CrossRefGoogle ScholarPubMed
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming micro-organisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Phillips, L., Ozbek, H., Igbene, A. & Litton, G.1980 Viscosity of NaCl and other solutions up to $350\,^{\circ }\text{C}$ and 50 MPa pressures. Tech. Rep. LBL-11586. Lawrence Berkeley National Laboratory.Google Scholar
Pick, U., Karni, L. & Avron, M. 1986 Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina . Plant Physiol. 81, 9296.CrossRefGoogle ScholarPubMed
Saintillan, D. & Shelley, M. J. 2006 Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20, 123304.Google Scholar
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.Google Scholar
Taylor, G. I. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 223, 446468.Google Scholar
Willams, C. R. & Bees, M. A. 2011a Photo-gyrotactic bioconvection. J. Fluid Mech. 678, 4186.CrossRefGoogle Scholar
Williams, C. R. & Bees, M. A. 2011b A tale of three taxes: photo-gyro-gravitactic bioconvection. J. Expl. Biol. 214 (14), 23982408.CrossRefGoogle ScholarPubMed
Zöttl, A. & Stark, H. 2012 Nonlinear dynamics of a microswimmer in Poiseuille flow. Phys. Rev. Lett. 108, 218104.CrossRefGoogle ScholarPubMed