Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T05:13:26.127Z Has data issue: false hasContentIssue false

Growth rates for fast kinematic dynamo instabilities of chaotic fluid flows

Published online by Cambridge University Press:  26 April 2006

Yunson Du
Affiliation:
Laboratory for Plasma Research and Department of Physics, University of Maryland, College Park, MD 20742-3511, USA
Edward Ott
Affiliation:
Laboratory for Plasma Research and Department of Physics, University of Maryland, College Park, MD 20742-3511, USA And Department of Electrical Engineering.

Abstract

It is shown that the exponential growth rate of the fast kinematic dynamo instability can be related to the Lagrangian stretching properties of the underlying chaotic flow. In particular, a formula is obtained relating the growth rate to the finite time Lyapunov numbers of the flow and the cancellation exponent κ. (The latter quantity characterizes the extremely singular nature of the magnetic field with respect to fine-scale spatial oscillation in orientation.) The growth rate formula is illustrated and tested on two examples: an analytically soluble model, and a numerically solved spatially smooth temporally periodic flow.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

With an Appendix by B. J. Bayly and A. Rado.

References

Arnol'd, V. I., Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokolov, D. D. 1981 Sov. Phys. JETP 81, 2050.
Aurell, E. & Gilbert, A. D. 1992 Fast dynamos and determinants of singular integral operators. Preprint.
Bayly, B. J. 1986 Phys. Rev. Lett. 57, 2800.
Bayly, B. J. Childress, S. 1988 Geophys. Astrophys. Fluid Dyn. 44, 211.
Du, Y. & Ott, E. 1993 Fractal dimensions of fast dynamo magnetic fields. Physica D (to appear.)Google Scholar
Farmer, J. D., Ott, E. & Yorke, J. A. 1983 Physica D 7, 153.
Feingold, M., Piro, O. & Kadanoff, L. P. 1988 J. Statist. Phys. 50, 529.
Finn, J. M., Hanson, J. D., Kan, I. & Ott, E. 1991 Phys. Fluids B 3, 1250.
Finn, J. M. & Ott, E. 1988 Phys. Fluids 31, 2992.
Finn, J. M. & Ott, E. 1990 Phys. Fluids B 2, 916.
Galloway, D. & Frisch, U. 1986 Geophys. Astrophys. Fluid Dyn. 36, 53.
Moffatt, H. K. & Proctor, M. R. E. 1985 J. Fluid Mech. 154, 493.
Ott, E., Du, Y., Sreenivasan, K. R., Juneja, A. & Suri, A. K. 1992 Phy. Rev. Lett. 69, 2654.
Soward, A. M. 1987 J. Fluid Mech. 180, 267.
Vishik, M. M. 1989 Geophys. Astrophys. Fluid Dyn. 48, 151.
Yomdin, Y. 1987 Israel J. Maths 57, 285.
Zel'dovich, Ya. B. & Ruzmaikin, A. A. 1980 Sov. Phys. JETP 51, 493.