Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T05:10:07.509Z Has data issue: false hasContentIssue false

Growth of vortical disturbances entrained in the entrance region of a circular pipe

Published online by Cambridge University Press:  02 December 2021

Pierre Ricco*
Affiliation:
Department of Mechanical Engineering, The University of Sheffield, S1 3JDSheffield, UK
Claudia Alvarenga
Affiliation:
Department of Mechanical Engineering, The University of Sheffield, S1 3JDSheffield, UK Department of Fluid Dynamics, A*Star Institute of High Performance Computing, Republic of Singapore
*
Email address for correspondence: [email protected]

Abstract

The development and growth of unsteady three-dimensional vortical disturbances entrained in the entry region of a circular pipe is investigated by asymptotic and numerical methods for Reynolds numbers between $1000$ and $10\,000$, based on the pipe radius and the bulk velocity. Near the pipe mouth, composite asymptotic solutions describe the dynamics of the oncoming disturbances, revealing how these disturbances are altered by the viscous layer attached to the pipe wall. The perturbation velocity profiles near the pipe mouth are employed as rigorous initial conditions for the boundary-region equations, which describe the flow in the limit of low frequency and large Reynolds number. The disturbance flow is initially primarily present within the base-flow boundary layer in the form of streamwise-elongated vortical structures, i.e. the streamwise velocity component displays an intense algebraic growth, while the cross-flow velocity components decay. Farther downstream the disturbance flow occupies the whole pipe, although the base flow is mostly inviscid in the core. The transient growth and subsequent viscous decay are confined in the entrance region, i.e. where the base flow has not reached the fully developed Poiseuille profile. Increasing the Reynolds number and decreasing the frequency causes more intense perturbations, whereas small azimuthal wavelengths and radial characteristic length scales intensify the viscous dissipation of the disturbance. The azimuthal wavelength that causes the maximum growth is found. The velocity profiles are compared successfully with available experimental data and the theoretical results are helpful to interpret the only direct numerical dataset of a disturbed pipe-entry flow.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alizard, F., Cadiou, A., Le Penven, L., Di Pierro, B. & Buffat, M. 2018 Space-time dynamics of optimal wavepackets for streaks in a channel entrance flow. J. Fluid Mech. 844, 669706.CrossRefGoogle Scholar
Andersson, P., Berggren, M. & Henningson, D.S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.CrossRefGoogle ScholarPubMed
Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110 (22), 224502.CrossRefGoogle Scholar
Avila, M., Willis, A.P. & Hof, B. 2010 On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127136.CrossRefGoogle Scholar
Bergström, L. 1993 Optimal growth of small disturbances in pipe Poiseuille flow. Phys. Fluids 5 (11), 27102720.CrossRefGoogle Scholar
Borodulin, V.I., Ivanov, A.V., Kachanov, Y.S. & Roschektayev, A.P. 2021 a Distributed vortex receptivity of a swept-wing boundary layer. Part 1. Efficient excitation of CF modes. J. Fluid Mech. 908, A14.CrossRefGoogle Scholar
Borodulin, V.I., Ivanov, A.V., Kachanov, Y.S. & Roschektayev, A.P. 2021 b Distributed vortex receptivity of a swept-wing boundary layer. Part 2. Receptivity characteristics. J. Fluid Mech. 908, A15.CrossRefGoogle Scholar
Brandt, L., Schlatter, P. & Henningson, D.S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Buffat, M., Le Penven, L., Cadiou, A. & Montagnier, J. 2014 DNS of bypass transition in entrance channel flow induced by boundary layer interaction. Eur. J. Mech. (B/Fluids) 43, 113.CrossRefGoogle Scholar
Corcos, G.M. & Sellars, J.R. 1959 On the stability of fully developed flow in a pipe. J. Fluid Mech. 5 (1), 97112.CrossRefGoogle Scholar
Crowder, H.J. & Dalton, C. 1971 On the stability of Poiseuille flow in a pipe. J. Comput. Phys. 7 (1), 1231.CrossRefGoogle Scholar
Davey, A. 1978 On Itoh's finite amplitude stability theory for pipe flow. J. Fluid Mech. 86 (4), 695703.CrossRefGoogle Scholar
Davey, A. & Nguyen, H.P.F. 1971 Finite-amplitude stability of pipe flow. J. Fluid Mech. 45 (4), 701720.CrossRefGoogle Scholar
Dettman, J.W. 1965 Applied Complex Variables. Courier Corporation.Google Scholar
Dietz, A.J. 1999 Local boundary-layer receptivity to a convected free-stream disturbance. J. Fluid Mech. 378, 291317.CrossRefGoogle Scholar
Draad, A.A., Kuiken, G.D.C. & Nieuwstadt, F.T.M. 1998 Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267312.CrossRefGoogle Scholar
Drazin, P.G. & Reid, W.H. 2004 Hydrodynamic Stability. Cambridge Mathematical Library.CrossRefGoogle Scholar
Duck, P.W. 2005 Transient growth in developing plane and Hagen Poiseuille flow. Proc. R. Soc. Lond. A 461, 13111333.Google Scholar
Duck, P.W. 2006 Nonlinear growth (and breakdown) of disturbances in developing Hagen Poiseuille flow. Phys. Fluids 18 (6), 064103.CrossRefGoogle Scholar
Duguet, Y., Willis, A.P. & Kerswell, R.R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
Durst, F., Ray, S., Ünsal, B. & Bayoumi, O.A. 2005 The development lengths of laminar pipe and channel flows. Trans. ASME J. Fluids Engng 127 (6), 11541160.CrossRefGoogle Scholar
Eckhardt, B. 2007 Turbulence transition in pipe flow: some open questions. Nonlinearity 21 (1), T1.CrossRefGoogle Scholar
Eckhardt, B. 2009 Introduction. Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds’ paper. Phil. Trans. R. Soc. A 367, 449455.CrossRefGoogle ScholarPubMed
Eckhardt, B., Schneider, T.M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Fox, J.A., Lessen, M. & Bhat, W.V. 1968 Experimental investigation of the stability of Hagen-Poiseuille flow. Phys. Fluids 11 (1), 14.CrossRefGoogle Scholar
Garg, V.K. 1981 Stability of developing flow in a pipe: non-axisymmetric disturbances. J. Fluid Mech. 110, 209216.CrossRefGoogle Scholar
Gill, A.E. 1965 On the behaviour of small disturbances to Poiseuille flow in a circular pipe. J. Fluid Mech. 21 (1), 145172.CrossRefGoogle Scholar
Goldstein, M.E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89, 433468.CrossRefGoogle Scholar
Gupta, S.C. & Garg, V.K. 1981 Effect of velocity distribution on the stability of developing flow in a pipe. Phys. Fluids 24 (4), 576578.CrossRefGoogle Scholar
Hof, B., De Lozar, A., Kuik, D.J. & Westerweel, J. 2008 Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101 (21), 214501.CrossRefGoogle ScholarPubMed
Hof, B., van Doorne, C.W.H., Westerweel, J. & Nieuwstadt, F.T.M. 2005 Turbulence regeneration in pipe flow at moderate Reynolds numbers. Phys. Rev. Lett. 95 (21), 214502.CrossRefGoogle ScholarPubMed
Hof, B., Van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.CrossRefGoogle ScholarPubMed
Hornbeck, R.W. 1964 Laminar flow in the entrance region of a pipe. Appl. Sci. Res. 13, 224232.CrossRefGoogle Scholar
Huang, L.M. & Chen, T.S. 1974 a Stability of developing pipe flow subjected to non-axisymetric disturbances. J. Fluid Mech. 63 (Part 1), 183193.CrossRefGoogle Scholar
Huang, L.M. & Chen, T.S. 1974 b Stability of the developing laminar pipe flow. Phys. Fluids 17, 245247.CrossRefGoogle Scholar
Itoh, N. 1977 Nonlinear stability of parallel flows with subcritical Reynolds numbers. Part 2. Stability of pipe Poiseuille flow to finite axisymmetric disturbances. J. Fluid Mech. 82 (3), 469479.CrossRefGoogle Scholar
Jacobs, R.G. & Durbin, P.A. 2001 Simulation of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Kaskel, A. 1961 Experimental study of the stability of pipe flow. II. Development of disturbance generator. Jet Propulsion Laboratory Tech. Rep. 32-138.Google Scholar
Kerswell, R.R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18 (6), R17.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Leib, S.J., Wundrow, D.W. & Goldstein, M.E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.CrossRefGoogle Scholar
Lessen, M., Sadler, G.S. & Liu, T.Y. 1968 Stability of pipe Poiseuille flow. Phys. Fluids 11, 14041409.CrossRefGoogle Scholar
Luchini, P. 1996 Reynolds-number-independent instability of the boundary layer over a flat surface. J. Fluid Mech. 327, 101115.CrossRefGoogle Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
Marensi, E., Ricco, P. & Wu, X. 2017 Nonlinear unsteady streaks engendered by the interaction of free-stream vorticity with a compressible boundary layer. J. Fluid Mech. 817, 80121.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P.H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.CrossRefGoogle Scholar
Mayer, E.W. & Reshotko, E. 1997 Evidence for transient disturbance growth in a 1961 pipe-flow experiment. Phys. Fluids 9 (1), 242244.CrossRefGoogle Scholar
Meseguer, A. 2003 Streak breakdown instability in pipe Poiseuille flow. Phys. Fluids 15 (5), 12031213.CrossRefGoogle Scholar
Mohanty, A.K. & Asthana, S.B.L. 1978 Laminar flow in the entrance region of a smooth pipe. J. Fluid Mech. 90, 433447.CrossRefGoogle Scholar
Mullin, T. 2011 Experimental studies of transition to turbulence in a pipe. Annu. Rev. Fluid Mech. 43, 124.CrossRefGoogle Scholar
O'Sullivan, P.L. & Breuer, K.S. 1994 Transient growth in circular pipe flow. I. Linear disturbances. Phys. Fluids 6 (11), 36433651.CrossRefGoogle Scholar
Panton, R. 2013 Incompressible Flow, 4th edn. Wiley-Interscience.CrossRefGoogle Scholar
Patera, A.T. & Orszag, S.A. 1981 Finite-amplitude stability of axisymmetric pipe flow. J. Fluid Mech. 112, 467474.CrossRefGoogle Scholar
Pedley, T.J. 1969 On the instability of viscous flow in a rapidly rotating pipe. J. Fluid Mech. 35 (1), 97115.CrossRefGoogle Scholar
Pekeris, C.L. 1948 Stability of the laminar flow through a straight pipe of circular cross-section to infinitesimal disturbances which are symmetrical about the axis of the pipe. PNAS 34 (6), 285.CrossRefGoogle Scholar
Rayleigh, L. 1892 On the instability of cylindrical fluid surfaces. Phil. Mag. 34 (5), 177180.CrossRefGoogle Scholar
Reshotko, E. 1958 Jet Propulsion Laboratory, Pasadena, California, Tech. Rep. 20-364.Google Scholar
Reshotko, E. & Tumin, A. 2001 Spatial theory of optimal disturbances in a circular pipe flow. Phys. Fluids 13 (4), 991996.CrossRefGoogle Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. 35 (224-226), 8499.Google Scholar
Ricco, P., Luo, J. & Wu, X. 2011 Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances. J. Fluid Mech. 677, 138.CrossRefGoogle Scholar
Rosenhead, L. 1963 Laminar Boundary Layers. Dover.Google Scholar
Rubin, S.G., Khosla, P.K. & Saari, S. 1977 Laminar flow in rectangular channels. Comput. Fluids 5, 151173.CrossRefGoogle Scholar
Sahu, K.C. & Govindarajan, R. 2007 Linear instability of entry flow in a pipe. Trans. ASME J. Fluids Engng 129 (10), 12771280.CrossRefGoogle Scholar
Salwen, H., Cotton, F.W. & Grosch, C.E. 1980 Linear stability of Poiseuille flow in a circular pipe. J. Fluid Mech. 98, 273–84.CrossRefGoogle Scholar
Sarpkaya, T. 1975 A note on the stability of developing laminar pipe flow subjected to axisymmetric and non-axisymmetric disturbances. J. Fluid Mech. 68 (2), 345351.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 1994 Optimal energy density growth in Hagen-Poiseuille flow. J. Fluid Mech. 277, 197225.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.CrossRefGoogle Scholar
Sexl, T. 1927 On the stability question of the Poiseuille and Couette currents. Ann. Phys. 388 (14), 835848.CrossRefGoogle Scholar
Shapiro, A.H., Siegel, R. & Kline, S.J. 1954 Friction factor in the laminar entry region of a smooth tube. Trans. ASME J. Appl. Mech. 21, 289289.Google Scholar
da Silva, D.F. & Moss, E.A. 1994 The stability of pipe entrance flows subjected to axisymmetric disturbances. J. Fluid Engng 116, 6165.CrossRefGoogle Scholar
Smith, F.T. & Bodonyi, R.J. 1980 On the stability of the developing flow in a channel or circular pipe. Q. J. Mech. Appl. Maths 33 (3), 293320.CrossRefGoogle Scholar
Smith, F.T. & Bodonyi, R.J. 1982 Amplitude-dependent neutral modes in the Hagen-Poiseuille flow through a circular pipe. Proc. R. Soc. Lond. 384 (1787), 463489.Google Scholar
Sparrow, E.M., Lin, S.H. & Lundgren, T.S. 1964 Flow development in the hydrodynamic entrance region of tubes and ducts. Phys. Fluids 7 (3), 338347.CrossRefGoogle Scholar
Tatsumi, T. 1952 Stability of the laminar inlet-flow prior to the formation of Poiseuille regime, II. J. Phys. Soc. Japan 7 (5), 495502.CrossRefGoogle Scholar
Trefethen, A.E., Trefethen, L.N. & Schmid, P.J. 1999 Spectra and pseudospectra for pipe Poiseuille flow. Comput. Meth. Appl. Mech. Engng 175 (3–4), 413420.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R.R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Wilson, S.D.R. 1970 Entry flow in a channel. Part 2. J. Fluid Mech. 46, 787799.CrossRefGoogle Scholar
Wu, X., Moin, P. & Adrian, R.J. 2020 Laminar to fully turbulent flow in a pipe: scalar patches, structural duality of turbulent spots and transitional overshoot. J. Fluid Mech. 896, A9.CrossRefGoogle Scholar
Wu, X., Moin, P., Adrian, R.J. & Baltzer, J.R. 2015 Osborne Reynolds pipe flow: direct simulation from laminar through gradual transition to fully developed turbulence. PNAS 112 (26), 79207924.CrossRefGoogle ScholarPubMed
Wygnanski, I.J. & Champagne, F.H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281335.CrossRefGoogle Scholar
Zanoun, E.-S., Kito, M. & Egbers, C. 2009 A study on flow transition and development in circular and rectangular ducts. Trans. ASME J. Fluids Engng 131 (6), 061204.CrossRefGoogle Scholar
Supplementary material: File

Ricco and Alvarenga supplementary material

Ricco and Alvarenga supplementary material

Download Ricco and Alvarenga supplementary material(File)
File 464.7 KB