Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T09:49:44.925Z Has data issue: false hasContentIssue false

Growth and collapse of cavitation bubbles near a curved rigid boundary

Published online by Cambridge University Press:  12 September 2002

Y. TOMITA
Affiliation:
Faculty of Education, Hokkaido University of Education, Hakodate, 1-2 Hachiman-cho, Hakodate, Hokkaido, Japan
P. B. ROBINSON
Affiliation:
School of Mathematics and Statistics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
R. P. TONG
Affiliation:
The Numerical Algorithms Group Ltd, Jordan Hill Road, Oxford OX2 8DR, UK
J. R. BLAKE
Affiliation:
School of Mathematics and Statistics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract

Laser-induced cavitation bubbles near a curved rigid boundary are observed experimentally using high-speed photography. An image theory is applied to obtain information on global bubble motion while a boundary integral method is employed to gain a more detailed understanding of the behaviour of a liquid jet that threads a collapsing bubble, creating a toroidal bubble. Comparisons between the theory and experiment show that when a comparable sized bubble is located near a rigid boundary the bubble motion is significantly influenced by the surface curvature of the boundary, which is characterized by a parameter ζ, giving convex walls for ζ < 1, concave walls for ζ > 1 and a flat wall when ζ = 1. If a boundary is slightly concave, the most pronounced migration occurs at the first bubble collapse. The velocity of a liquid jet impacting on the far side of the bubble surface tends to increase with decreasing parameter ζ. In the case of a convex boundary, the jet velocity is larger than that generated in the flat boundary case. Although the situation considered here is restricted to axisymmetric motion without mean flow, this result suggests that higher pressures can occur when cavitation bubbles collapse near a non-flat boundary. Bubble separation, including the pinch-off phenomenon, is observed in the final stage of the collapse of a bubble, with the oblate shape at its maximum volume attached to the surface of a convex boundary, followed by bubble splitting which is responsible for further bubble proliferation.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)