Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T21:59:19.595Z Has data issue: false hasContentIssue false

Gravity-induced collisions of spherical drops covered with compressible surfactant

Published online by Cambridge University Press:  14 January 2011

ALEXANDER Z. ZINCHENKO*
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
MICHAEL A. ROTHER
Affiliation:
Department of Chemical Engineering, University of Minnesota Duluth, Duluth, MN 55812-3025, USA
ROBERT H. DAVIS
Affiliation:
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
*
Email addresses for correspondence: [email protected], [email protected], [email protected]

Abstract

Gravity-induced collisions of two spherical drops covered with an insoluble surfactant at low Reynolds numbers are considered. Unlike in previous collision studies, the present work accounts for nonlinear coupling between the surfactant distribution and drop hydrodynamics by solving the full unsteady convective–diffusion equation for the surfactant transport. Our method includes high-order three-dimensional multipole expansions for hydrodynamics and a Galerkin-type approach for the surfactant transport with implicit marching. The efficiency of the algorithm allows for calculating thousands of trajectories to very close contact and determining the collision efficiency (related to the critical initial horizontal offset) by trial and error. The solution is valid for arbitrary surface Péclet (Pes) and Marangoni (Ma) numbers and sets limitations on approximations used in prior work for collision-efficiency calculations. Two limiting cases are observed: at small Pes or large Ma, the variation in surfactant coverage is small, and the results for the incompressible surfactant model are recovered, while for large Pes and small Ma, the collision efficiency approaches the clean-interface value. For moderate drop-size ratios (radius ratio k ≤ 0.5), the results generally fall between these limits. At larger size ratios, however, the collision efficiency may even exceed the geometrical Smoluchowski limit for both drops and bubbles. Moreover, with even moderate redistribution of the surfactant, equal-sized drops can move relative to one another and collide. These novel effects do not exist for clean drops or drops covered with an incompressible surfactant, and they are due to the nonlinear coupling between surfactant dynamics and flow. This surfactant-enhanced coalescence takes place, for example, in a physical system of air bubbles in water if the surfactant surface concentration is dilute (Γ ≈ 1×10−9 mol m−2, much smaller than the typical maximum-packing value of 10−5−10−6 mol m−2).

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, S. & Wasan, D. 1979 The effect of interfacial viscosities on the motion of drops and bubbles. Chem. Engng J. 18, 215223.CrossRefGoogle Scholar
Alves, S. S., Orvalho, S. P. & Vasconcelos, J. M. T. 2005 Effect of bubble contamination on rise velocity and mass transfer Chem. Engng Sci. 60, 19.CrossRefGoogle Scholar
Beitel, A. & Heidegger, W. J. 1971 Surfactant effects on mass transfer from drops subject to interfacial instability. Chem. Engng Sci. 26, 711717.CrossRefGoogle Scholar
Bławzdziewicz, J., Cristini, V. & Loewenberg, M. 1999 a Near-contact motion of surfactant-covered spherical drops: ionic surfactant. J. Colloid Interface Sci. 211, 355366.CrossRefGoogle ScholarPubMed
Bławzdziewicz, J., Wajnryb, E. & Loewenberg, M. 1999 b Hydrodynamic interactions and collision efficiencies of spherical drops covered with an incompressible surfactant film. J. Fluid Mech. 395, 2959.CrossRefGoogle Scholar
Bławzdziewicz, J., Vlahovska, P. & Loewenberg, M. 2000 Rheology of a dilute emulsion of surfactant-covered spherical drops. Physica A 276, 5085.CrossRefGoogle Scholar
Chen, J. & Stebe, K. J. 1996 Marangoni retardation of the terminal velocity of a settling droplet: the role of surfactant physico-chemistry. J. Colloid Interface Sci. 178, 144155.CrossRefGoogle Scholar
Chesters, A. K. & Bazhlekov, I. B. 2000 Effect of insoluble surfactants on drainage and rupture of a film between drops interacting under a constant force. J. Colloid Interface Sci. 230, 229243.CrossRefGoogle Scholar
Cichocki, B., Felderhof, B. U. & Schmitz, R. 1988 Hydrodynamic interactions between two spherical particles. Physico-Chem. Hydrodyn. 10, 383403.Google Scholar
Cristini, V., Bławzdziewicz, J. & Loewenberg, M. 1998 Near-contact motion of surfactant-covered spherical drops. J. Fluid Mech. 366, 259287.CrossRefGoogle Scholar
Cristini, V. & Tan, Y. 2004 Theory and numerical simulation of droplet dynamics in complex flows – a review. Lab on a Chip 4, 257264.CrossRefGoogle ScholarPubMed
Cuenot, B., Magnaudet, J. & Spennato, B. 1997 The effects of slightly soluble surfactants on the flow around a spherical bubble. J. Fluid Mech. 339, 2553.CrossRefGoogle Scholar
Danov, K. D., Valkovska, D. S. & Ivanov, I. B. 1999 Effect of surfactants on the film drainage. J. Colloid Interface Sci. 211, 291303.CrossRefGoogle ScholarPubMed
Davis, R. H., Schonberg, J. A. & Rallison, J. M. 1989 The lubrication force between two viscous drops. Phys. Fluids 1, 7781.CrossRefGoogle Scholar
Edge, R. M. & Grant, C. D. 1972 The motion of drops in water contaminated with a surface active agent. Chem. Engng Sci. 27, 17091721.CrossRefGoogle Scholar
Eggleton, C. D., Pawar, Y. & Stebe, K. J. 1999 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.CrossRefGoogle Scholar
Eggleton, C. D., Tsai, T. M. & Stebe, K. J. 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87, 048302.CrossRefGoogle ScholarPubMed
Elzinga, E. R. & Banchero, J. T. 1961 Some observations on the mechanics of drops in liquid–liquid systems. AIChE J. 7, 394399.CrossRefGoogle Scholar
Fdhila, R. & Duineveld, P. C. 1996 The effect of surfactants on the rise of a spherical bubble at high Reynolds and Peclet numbers. Phys. Fluids 8, 310321.CrossRefGoogle Scholar
Frumkin, A. & Levich, V. 1947 O vliyanii poverkhnosto-aktivnikh veshestv na dvizhenie na granitse zhidkikh sred. Zhur. Fizic. Khimii 21, 11831204.Google Scholar
Garner, F. H. & Skelland, H. P. 1955 Some factors affecting droplet behavior in liquid–liquid systems. Chem. Engng Sci. 4, 149158.CrossRefGoogle Scholar
Griffith, R. 1962 The effect of surfactants on the terminal velocity of drops and bubbles. Chem. Engng Sci. 17, 10571070.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Nijhoff.Google Scholar
Harper, J. F. 1988 The near stagnation region of a bubble rising steadily in a dilute surfactant solution. Q. J. Mech. Appl. Math. 41, 204213.CrossRefGoogle Scholar
Harper, J. F. 2007 Bubble rise in a liquid with a surfactant gas in particular carbon dioxide J. Fluid Mech. 581, 157165.CrossRefGoogle Scholar
He, Z., Maldarelli, C. & Dagan, Z. 1991 The size of stagnant caps of bulk soluble surfactant on the interfaces of translating liquid droplets. J. Colloid Interface Sci. 146, 442451.CrossRefGoogle Scholar
Hetsroni, S. & Haber, S. 1978 Low Reynolds number motion of two drops submerged in an unbounded arbitrary velocity field. Intl J. Multiphase Flow 4, 117.CrossRefGoogle Scholar
Holbrook, J. A. & LeVan, M. D. 1983 a Retardation of droplet motion by surfactant. Part 1. Theoretical development and asymptotic solutions. Chem. Engng Commun. 20, 191207.CrossRefGoogle Scholar
Holbrook, J. A. & LeVan, M. D. 1983 b Retardation of droplet motion by surfactant. Part 2. Numerical solutions for exterior diffusion, surface diffusion, and adsorption kinetics. Chem. Engng Commun. 20, 273290.CrossRefGoogle Scholar
Horton, T. J., Fritsch, T. R. & Kintner, R. C. 1965 Experimental determination of circulation velocities inside drops. Can. J. Chem. Engng 43, 143146.CrossRefGoogle Scholar
Hu, Y. T., Pine, D. J. & Leal, L. G. 2000 Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids A 12, 484489.CrossRefGoogle Scholar
Hudson, S. D., Jamieson, A. M. & Burkhart, B. E. 2003. The effect of surfactant on the efficiency of shear-induced drop coalescence, J. Colloid Interface Sci. 265 (2), 409421.CrossRefGoogle ScholarPubMed
Jones, R. B. & Schmitz, R. 1988 Mobility matrix for arbitrary spherical particles in solution. Physica A 149, 373394.CrossRefGoogle Scholar
Karsa, D. R. (Ed.) 2000 Surface Active Behaviour of Performance Surfactants. Sheffield Academic Press.Google Scholar
Korn, G. A. & Korn, T. M. 1968 Mathematical Handbook for Scientists and Engineers. McGraw-Hill.Google Scholar
Kushner, J. IV, Rother, M. A. & Davis, R. H. 2001 Buoyancy-driven interactions of viscous drops with deforming interfaces. J. Fluid Mech. 446, 253269.CrossRefGoogle Scholar
Levich, A. 1962 Physiochemical Hydrodynamics. Prentice Hall.Google Scholar
Li, D. 1996 Coalescence between small bubbles: effects of surface tension gradient and surface viscosities. J. Colloid Interface Sci. 181, 3444.CrossRefGoogle Scholar
Li, X. & Mao, Z. 2001 The effect of surfactant on the motion of a buoyancy-driven drop at intermediate Reynolds numbers: a numerical approach. J. Colloid Interface Sci. 240, 307322.CrossRefGoogle Scholar
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165194.CrossRefGoogle Scholar
Manga, M. & Stone, H. A. 1993 Buoyancy-driven interactions between two deformable viscous drops. J. Fluid Mech. 256, 647683.CrossRefGoogle Scholar
Manga, M. & Stone, H. A. 1995 Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions. J. Fluid Mech. 300, 231263.CrossRefGoogle Scholar
Mo, G. & Sangani, A. S. 1994 A method for computing Stokes flow interactions among spherical objects. Phys. Fluids 6, 1637.CrossRefGoogle Scholar
Mousa, H. & van de Ven, T. G. M. 1991 Stability of water-in-oil emulsions in simple shear flow. Part 2. The effects of additives on the orthokinetic coalescence efficiency. Colloids Surf. A 60, 3951.CrossRefGoogle Scholar
Nandi, A., Mehra, A. & Khakhar, D. V. 1999 Suppression of coalescence in surfactant stabilized emulsions by shear flow. Phys. Rev. Lett. 83, 24612464.CrossRefGoogle Scholar
Nguyen, N. & Werely, S. T. 2002 Fundamentals and Applications of Microfluidics. Artech House.Google Scholar
Park, C. C., Baldessari, F. & Leal, L. G. 2003 Study of molecular weight effects on coalescence: interface slip layer. J. Rheol. 47, 911942.CrossRefGoogle Scholar
Pawar, Y. & Stebe, K. J. 1996 Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. Part I. Insoluble surfactants. Phys. Fluids 8, 1738.CrossRefGoogle Scholar
Porter, M. R. (Ed.) 1990 Recent Developments in the Technology of Surfactants. Elsevier Applied Science.Google Scholar
Pozrikidis, C. 1994 Effects of surface viscosity on the finite deformation of a liquid drop and the rheology of dilute emulsions in simple shearing flow. J. Non-Newtonian. Fluid Mech. 51, 161178.CrossRefGoogle Scholar
Pozrikidis, C. 1994 Effects of surface viscosity on the finite deformation of a liquid drop and the rheology of dilute emulsions in simple shearing flow. J. Non-Newtonian. Fluid Mech. 51, 161178.CrossRefGoogle Scholar
Rother, M. A. 2009 Effects of incompressible surfactant on thermocapillary interactions of spherical drops. Intl J. Multiphase Flow 35, 417426.CrossRefGoogle Scholar
Rother, M. A. & Davis, R. H. 1999 The effects of slight deformation on thermocapillary-driven droplet coalescence and growth. J. Colloid Interface Sci. 214, 297318.CrossRefGoogle ScholarPubMed
Rother, M. A., Zinchenko, A. Z. & Davis, R. H. 1997 Buoyancy-driven coalescence of slightly deformable drops. J. Fluid Mech. 346, 117148.CrossRefGoogle Scholar
Rother, M. A., Zinchenko, A. Z. & Davis, R. H. 2006 Surfactant effects on buoyancy-driven viscous interactions of deformable drops. Colloids Surf. A 282–283, 5060.CrossRefGoogle Scholar
Sadhal, S. S. & Johnson, R. E. 1983 Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film - exact solution. J. Fluid Mech. 126, 237250.CrossRefGoogle Scholar
Saville, D. 1973 The effect of interfacial tension gradients on droplet behaviour. Chem. Engng J. 5, 251259.CrossRefGoogle Scholar
Shen, A. Q., Gleason, B., McKinley, G. H. & Stone, H. A. 2002 Fiber coating with surfactant solutions. Phys. Fluids 14, 40554068.CrossRefGoogle Scholar
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Subramanian, R. S. & Balasubramaniam, R. 2001. The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.Google Scholar
Takemura, F. 2005 Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble. Phys. Fluids 17, 048104.CrossRefGoogle Scholar
Valkovska, D. S., Danov, K. D. & Ivanov, I. B. 1999 Surfactants role on the deformation of colliding small bubbles. Colloids Surf. A 156, 547566.CrossRefGoogle Scholar
Valkovska, D. S., Danov, K. D. & Ivanov, I. B. 2000 Effect of surfactants on the stability of films between two colliding small bubbles. Colloids Surf. A 175, 179192.CrossRefGoogle Scholar
Vlahovska, P., Bławzdziewicz, J. & Loewenberg, M. 2002 Nonlinear rheology of a dilute emulsion of surfactant-covered spherical drops in time-dependent flows. J. Fluid Mech. 463, 124.CrossRefGoogle Scholar
Wasserman, M. & Slattery, J. 1969 Creeping flow past a fluid globule when a trace of surfactant is present. AIChE J. 15, 533541.CrossRefGoogle Scholar
Yamamoto, T. & Ishii, T. 1987 Effect of surface active materials on the drag coefficients and shapes of single large gas bubbles. Chem. Engng Sci. 42, 12971303.CrossRefGoogle Scholar
Yiantsios, S. G. & Davis, R. H. 1990 On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface. J. Fluid Mech. 217, 547573.CrossRefGoogle Scholar
Yiantsios, S. G. & Davis, R. H. 1991 Close approach and deformation of two viscous drops due to gravity and van der Waals forces. J. Colloid Interface Sci. 144, 412433.CrossRefGoogle Scholar
Yeo, L. Y., Matar, O. K., Perez de Ortiz, E. S. & Hewitt, G. F. 2001 The dynamics of Marangoni-driven local film drainage between two drops. J. Colloid Interface Sci. 241, 233247.CrossRefGoogle ScholarPubMed
Zhang, X. & Davis, R. H. 1991 The rate of collisions of small drops due to Brownian or gravitational motion. J. Fluid Mech. 230, 479504.CrossRefGoogle Scholar
Zhang, Y. & Finch, J. A. 2001 A note on single bubble motion in surfactant solutions. J. Fluid Mech. 429, 6366.CrossRefGoogle Scholar
Zinchenko, A. Z. 1978 Calculation of hydrodynamic interaction between drops at low Reynolds numbers. J. Appl. Math. Mech. 42, 10461051.CrossRefGoogle Scholar
Zinchenko, A. Z. 1982 Calculations of the effectiveness of gravitational coagulation of drops with allowance for internal circulation. J. Appl. Math. Mech. 46, 5865.CrossRefGoogle Scholar
Zinchenko, A. Z. 1994 An efficient algorithm for calculating multiparticle thermal interaction in a concentrated dispersion of spheres. J. Comput. Phys. 111, 120135.CrossRefGoogle Scholar
Zinchenko, A. Z. & Davis, R. H. 2000 An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comput. Phys. 157, 539587.CrossRefGoogle Scholar
Zinchenko, A. Z. & Davis, R. H. 2005 A multipole-accelerated algorithm for close interaction of slightly deformable drops. J. Comput. Phys. 207, 695735.CrossRefGoogle Scholar
Zinchenko, A. Z. & Davis, R. H. 2008 Algorithm for direct numerical simulation of emulsion flow through a granular material. J. Comput. Phys. 227, 78417888.CrossRefGoogle Scholar
Zinchenko, A. Z., Rother, M. A. & Davis, R. H. 1999 Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm. J. Fluid Mech. 391, 249292.CrossRefGoogle Scholar