Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T02:33:06.072Z Has data issue: false hasContentIssue false

Gravitational extension of a fluid cylinder with internal structure

Published online by Cambridge University Press:  03 February 2016

Hayden Tronnolone*
Affiliation:
School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
Yvonne M. Stokes
Affiliation:
School of Mathematical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
Herbert Tze Cheung Foo
Affiliation:
Institute for Photonics and Advanced Sensing, School of Chemistry and Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
Heike Ebendorff-Heidepriem
Affiliation:
Institute for Photonics and Advanced Sensing, School of Chemistry and Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
*
Email address for correspondence: [email protected]

Abstract

Motivated by the fabrication of microstructured optical fibres, a model is presented for the extension under gravity of a slender fluid cylinder with internal structure. It is shown that the general problem decouples into a two-dimensional surface-tension-driven Stokes flow that governs the transverse shape and an axial problem that depends upon the transverse flow. The problem and its solution differ from those obtained for fibre drawing, because the problem is unsteady and the fibre tension depends on axial position. Solutions both with and without surface tension are developed and compared, which show that the relative importance of surface tension depends upon both the parameter values and the geometry under consideration. The model is compared with experimental data and is shown to be in good agreement. These results also show that surface-tension effects are essential to accurately describing the cross-sectional shape.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buchak, P., Crowdy, D. G., Stokes, Y. M. & Ebendorff-Heidepriem, H. 2015 Elliptical pore regularisation of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech. 778, 538.Google Scholar
Chakravarthy, S. S. & Chiu, W. K. S. 2009 Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section. J. Fluid Mech. 621, 155182.CrossRefGoogle Scholar
Cummings, L. J. & Howell, P. D. 1999 On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361389.CrossRefGoogle Scholar
Denn, M. M. 1980 Continuous drawing of liquids to form fibers. Annu. Rev. Fluid Mech. 12, 365387.Google Scholar
Dewynne, J., Ockendon, J. R. & Wilmott, P. 1989 On a mathematical model for fiber tapering. SIAM J. Appl. Maths 49 (4), 983990.Google Scholar
Dewynne, J. N., Howell, P. D. & Willmot, P. 1994 Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Maths 47 (4), 541555.CrossRefGoogle Scholar
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1992 A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323338.Google Scholar
Ebendorff-Heidepriem, H. & Monro, T. M. 2007 Extrusion of complex preforms for microstructured optical fibers. Opt. Express 15 (23), 8692.CrossRefGoogle ScholarPubMed
Ebendorff-Heidepriem, H. & Monro, T. M. 2012 Analysis of glass flow during extrusion of optical fiber preforms. Opt. Mater. Express 2 (3), 304320.CrossRefGoogle Scholar
Fitt, A. D., Furusawa, K., Monro, T. M., Please, C. P. & Richardson, D. J. 2002 The mathematical modelling of capillary drawing for holey fibre manufacture. J. Engng Maths 43 (2), 201227.CrossRefGoogle Scholar
Griffiths, I. M. & Howell, P. D. 2007 The surface-tension-driven evolution of a two-dimensional annular viscous tube. J. Fluid Mech. 593, 181208.CrossRefGoogle Scholar
Griffiths, I. M. & Howell, P. D. 2008 Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181206.Google Scholar
Griffiths, I. M. & Howell, P. D. 2009 The surface-tension-driven retraction of a viscida. SIAM J. Appl. Maths 70 (5), 14531487.Google Scholar
Hopper, R. W. 1990 Plane Stokes flow driven by capillarity on a free surface. J. Fluid Mech. 213, 349375.Google Scholar
Huang, H., Wylie, J. J., Miura, R. M. & Howell, P. D. 2007 On the formation of glass microelectrodes. SIAM J. Appl. Maths 67 (3), 630666.Google Scholar
Kaye, A. 1991 Convected coordinates and elongational flow. J. Non-Newtonian Fluid Mech. 40 (1), 5577.Google Scholar
Knight, J. C. 2003 Photonic crystal fibres. Nature 424 (6950), 847851.Google Scholar
Kostecki, R., Ebendorff-Heidepriem, H., Warren-Smith, S. C. & Monro, T. M. 2014 Predicting the drawing conditions for microstructured optical fiber fabrication. Opt. Mater. Express 4 (1), 2940.Google Scholar
Lin, K. J. & Jou, R. Y. 1995 Non-axisymmetric extrusion of viscous and viscoelastic liquids under gravity. Intl J. Non-Linear Mech. 30 (4), 449463.Google Scholar
Manning, S.2011 A study of tellurite glasses for electro-optic optical fibre devices. PhD thesis, School of Chemistry and Physics.Google Scholar
Matovich, M. A. & Pearson, J. R. A. 1969 Spinning a molten threadline. Steady-state isothermal viscous flows. Ind. Engng Chem. Fundam. 8 (3), 512520.CrossRefGoogle Scholar
Monro, T. M. & Ebendorff-Heidepriem, H. 2006 Progress in microstructured optical fibres. Annu Rev. Mater. Res. 36 (1), 467495.Google Scholar
Schultz, W. W. & Davis, S. H. 1982 One-dimensional liquid fibres. J. Rheol. 26 (4), 331345.Google Scholar
Stokes, Y. M. 1999 Flowing windowpanes: fact or fiction? Proc. R. Soc. Lond. A 455 (1987), 27512756.CrossRefGoogle Scholar
Stokes, Y. M. 2000 Flowing windowpanes: a comparison of Newtonian and Maxwell fluid models. Proc. R. Soc. Lond. A 456 (2000), 18611864.CrossRefGoogle Scholar
Stokes, Y. M., Bradshaw-Hajek, B. H. & Tuck, E. O. 2011 Extensional flow at low Reynolds number with surface tension. J. Engng Maths 70 (1–3), 321331.Google Scholar
Stokes, Y. M., Buchak, P., Crowdy, D. G. & Ebendorff-Heidepriem, H. 2014 Drawing of micro-structured fibres: circular and non-circular tubes. J. Fluid Mech. 755, 176203.Google Scholar
Stokes, Y. M. & Tuck, E. O. 2004 The role of inertia in extensional fall of a viscous drop. J. Fluid Mech. 498, 205225.Google Scholar
Taroni, M., Breward, C. J. W., Cummings, L. J. & Griffiths, I. M. 2013 Asymptotic solutions of glass temperature profiles during steady optical fibre drawing. J. Engng Maths 80 (1), 120.Google Scholar
Tronnolone, H.2016 Extensional and surface-tension-driven fluid flows in microstructured optical fibre fabrication. PhD thesis, School of Mathematical Sciences, University of Adelaide.Google Scholar
Trouton, F. T. 1906 On the coefficient of viscous traction and its relation to that of viscosity. Proc. R. Soc. Lond. A 77 (519), 426440.Google Scholar
Wilmott, P. 1989 The stretching of a thin viscous inclusion and the drawing of glass sheets. Phys. Fluids A 1 (7), 10981103.CrossRefGoogle Scholar
Wilson, S. D. R. 1988 The slow dripping of a viscous fluid. J. Fluid Mech. 190, 561570.Google Scholar
Wylie, J. J. & Huang, H. 2007 Extensional flows with viscous heating. J. Fluid Mech. 571, 359370.Google Scholar
Wylie, J. J., Huang, H. & Miura, R. M. 2011 Stretching of viscous threads at low Reynolds numbers. J. Fluid Mech. 683, 212234.Google Scholar
Xue, S. C., Large, M. C. J., Barton, G. W., Tanner, R. I., Poladian, L. & Lwin, R. 2006 Role of material properties and drawing conditions in the fabrication of microstructured optical fibers. J. Lightwave Technol. 24 (2), 853860.Google Scholar
Xue, S. C., Tanner, R. I., Barton, G. W., Lwin, R., Large, M. C. J. & Poladian, L. 2005a Fabrication of microstructured optical fibers – Part I: problem formulation and numerical modeling of transient draw process. J. Lightwave Technol. 23 (7), 22452254.Google Scholar
Xue, S. C., Tanner, R. I., Barton, G. W., Lwin, R., Large, M. C. J. & Poladian, L. 2005b Fabrication of microstructured optical fibers – Part II: numerical modeling of steady-state draw process. J. Lightwave Technol. 23 (7), 22552266.Google Scholar
Yarin, A., Rusinov, V. l., Gospodinov, P. & Radev, St. 1989 Quasi one-dimensional model of drawing of glass microcapillaries and approximate solutions. J. Theor. Appl. Mech. 20 (3), 5562.Google Scholar
Yarin, A. L. 1995 Surface-tension-driven flows at low Reynolds number arising in optoelectronic technology. J. Fluid Mech. 286, 173200.Google Scholar
Yarin, A. L., Gospodinov, P. & Roussinov, V. I. 1994 Stability loss and sensitivity in hollow fiber drawing. Phys. Fluids 6 (4), 14541463.Google Scholar