Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T05:32:39.924Z Has data issue: false hasContentIssue false

Global modes, receptivity, and sensitivity analysis of diffusion flames coupled with duct acoustics

Published online by Cambridge University Press:  04 July 2014

Luca Magri*
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
Matthew P. Juniper
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
*
Email address for correspondence: [email protected]

Abstract

In this theoretical and numerical paper, we derive the adjoint equations for a thermo-acoustic system consisting of an infinite-rate chemistry diffusion flame coupled with duct acoustics. We then calculate the thermo-acoustic system’s linear global modes (i.e. the frequency/growth rate of oscillations, together with their mode shapes), and the global modes’ receptivity to species injection, sensitivity to base-state perturbations and structural sensitivity to advective-velocity perturbations. Some of these could be found by finite difference calculations but the adjoint analysis is computationally much cheaper. We then compare these with the Rayleigh index. The receptivity analysis shows the regions of the flame where open-loop injection of fuel or oxidizer will have the greatest influence on the thermo-acoustic oscillation. We find that the flame is most receptive at its tip. The base-state sensitivity analysis shows the influence of each parameter on the frequency/growth rate. We find that perturbations to the stoichiometric mixture fraction, the fuel slot width and the heat-release parameter have most influence, while perturbations to the Péclet number have the least influence for most of the operating points considered. These sensitivities oscillate, e.g. positive perturbations to the fuel slot width either stabilizes or destabilizes the system, depending on the operating point. This analysis reveals that, as expected from a simple model, the phase delay between velocity and heat-release fluctuations is the key parameter in determining the sensitivities. It also reveals that this thermo-acoustic system is exceedingly sensitive to changes in the base state. The structural-sensitivity analysis shows the influence of perturbations to the advective flame velocity. The regions of highest sensitivity are around the stoichiometric line close to the inlet, showing where velocity models need to be most accurate. This analysis can be extended to more accurate models and is a promising new tool for the analysis and control of thermo-acoustic oscillations.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balasubramanian, K. & Sujith, R. I. 2008a Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames. J. Fluid Mech. 594, 2957.CrossRefGoogle Scholar
Balasubramanian, K. & Sujith, R. I. 2008b Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity. Phys. Fluids 20 (4), 044103.CrossRefGoogle Scholar
Balasubramanian, K. & Sujith, R. I. 2013 Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames – CORRIGENDUM. J. Fluid Mech. 733, 680680.CrossRefGoogle Scholar
Belegundu, A. D. & Arora, J. S. 1985 A sensitivity interpretation of adjoint variables in optimal design. Comput. Meth. Appl. Mech. Engng 48, 8189.CrossRefGoogle Scholar
Bewley, T. 2001 Flow control: new challanges for a new Renaissance. Prog. Aerosp. Sci. 37, 2158.CrossRefGoogle Scholar
Chandler, G. J., Juniper, M. P., Nichols, J. W. & Schmid, P. J. 2011 Adjoint algorithms for the Navier–Stokes equations in the low Mach number limit. J. Comput. Phys. 231 (4), 19001916.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Culick, F. E. C.2006 Unsteady motions in combustion chambers for propulsion systems. RTO AGARDograph AG-AVT-039. North Atlantic Treaty Organization.Google Scholar
Dennery, P. & Krzywicky, A. 1996 Mathematics for Physicists. Dover Publications, Inc.Google Scholar
Dowling, A. P. 1995 The calculation of thermoacoustic oscillations. J. Sound Vib. 180 (4), 557581.CrossRefGoogle Scholar
Dowling, A. P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.CrossRefGoogle Scholar
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37, 151182.CrossRefGoogle Scholar
Dowling, A. P. & Stow, S. R. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19 (5), 751764.CrossRefGoogle Scholar
Errico, R. M. 1997 What is an adjoint model?. Bull. Am. Meteorol. Soc. 78, 25772591.2.0.CO;2>CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Giles, M. B. & Pierce, N. A. 2000 An introduction to the adjoint approach to design. Flow Turbul. Combust. 65, 393415.CrossRefGoogle Scholar
Gunzburger, M. D. 1997 Inverse design and optimisation methods. In Introduction into Mathematical Aspects of Flow Control and Optimization, Lecture Series 1997-05. von Kármán Insitute for Fluid Dynamics.Google Scholar
Heckl, M. A. 1988 Active control of the noise from a Rijke tube. J. Sound Vib. 124 (1), 117133.CrossRefGoogle Scholar
Hill, D. C.1992 A theoretical approach for analysing the restabilization of wakes. NASA Technical Memorandum 103858.CrossRefGoogle Scholar
Illingworth, S. J., Waugh, I. C. & Juniper, M. P. 2013 Finding thermoacoustic limit cycles for a ducted Burke–Schumann flame. Proc. Combust. Inst. 34 (1), 911920.CrossRefGoogle Scholar
Juniper, M. P. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667, 272308.CrossRefGoogle Scholar
Kulkarni, R., Balasubramanian, K. & Sujith, R. I. 2011 Non-normality and its consequences in active control of thermoacoustic instabilities. J. Fluid Mech. 670, 130149.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon Press.Google Scholar
Lieuwen, T. C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modelling. American Institute of Aeronautics and Astronautics, Inc.Google Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 130.CrossRefGoogle Scholar
Luchini, P., Giannetti, F. & Pralits, J. O.2008 Structural sensitivity of linear and nonlinear global modes. In Proceedings of Fifth AIAA Theoretical Fluid Mechanics Conference, p. 4227.Google Scholar
Magina, N. A. & Lieuwen, T. C.2014 Effect of axial diffusion on the response of over-ventilated diffusion flames to axial flow perturbations. In 52nd Aerospace Science Meeting, pp. 1–13.Google Scholar
Magina, N., Shin, D.-H., Acharya, V. & Lieuwen, T. 2013 Response of non-premixed flames to bulk flow perturbations. Proc. Combust. Inst. 34 (1), 963971.CrossRefGoogle Scholar
Magri, L., Balasubramanian, K., Sujith, R. I. & Juniper, M. P. 2013 Non-normality in combustion–acoustic interaction in diffusion flames: a critical revision. J. Fluid Mech. 733, 681684.CrossRefGoogle Scholar
Magri, L. & Juniper, M. P. 2013a A theoretical approach for passive control of thermoacoustic oscillations: application to ducted flames. Trans. ASME: J. Engng Gas Turbines Power 135 (9), 091604.Google Scholar
Magri, L. & Juniper, M. P. 2013b Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach. J. Fluid Mech. 719, 183202.CrossRefGoogle Scholar
Magri, L. & Juniper, M. P. 2014 Adjoint-based linear analysis in reduced-order thermo-acoustic models. Intl J. Spray Combust. Dyn. (in press).CrossRefGoogle Scholar
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.CrossRefGoogle Scholar
Matveev, K.2003 Thermoacoustic instabilities in the Rijke tube: experiments and modelling. PhD thesis, Caltech Institute of Technology.Google Scholar
Nicoud, F. & Wieczorek, K. 2009 About the zero Mach number assumption in the calculation of thermoacoustic instabilities. Intl J. Spray Combust. Dyn. 1 (1), 67111.CrossRefGoogle Scholar
Peters, N.1992 Fifteen lectures on laminar and turbulent combustion. Ercoftac Summer School, 14–28 September, Aachen, Germany.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion, 2nd edn R T Edwards.Google Scholar
Lord Rayleigh. 1878 The explanation of certain acoustical phenomena. Nature 18, 319–321.Google Scholar
Salwen, H. & Grosch, C. E. 1981 The continuous spectrum of the Orr–Sommerfeld equation. Part 2. Eigenfunction expansions. J. Fluid Mech. 104, 445465.CrossRefGoogle Scholar
Sayadi, T., Le Chenadec, V., Schmid, P. J., Richecoeur, F. & Massot, M.2013 A novel numerical approach and stability analysis of thermo-acoustic phenomenon in the Rijke tube problem. In Bulletin of the American Physical Society, 66th Annual Meeting of the APS Division of Fluid Dynamics, November 24–26, Pittsburgh, Pennsylvania, Volume 58, Number 18.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P. J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, sensitivity. Appl. Mech. Rev. 66 (2), 024803–024803-21.CrossRefGoogle Scholar
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63 (3), 030801.CrossRefGoogle Scholar
Strykowski, P. J. & Sreenivasan, K. R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.CrossRefGoogle Scholar
Tyagi, M., Chakravarthy, S. R. & Sujith, R. I. 2007a Unsteady combustion response of a ducted non-premixed flame and acoustic coupling. Combust. Theor. Model. 11 (2), 205226.CrossRefGoogle Scholar
Tyagi, M., Jamadar, N. & Chakravarthy, S. 2007b Oscillatory response of an idealized two-dimensional diffusion flame: analytical and numerical study. Combust. Flame 149 (3), 271285.CrossRefGoogle Scholar
Vogel, C. R. & Wade, J. G. 1995 Analysis of costate discretizations in parameter estimation for linear evolution equations. SIAM J. Control Optim. 33 (1), 227254.CrossRefGoogle Scholar
Zhao, D. 2012 Transient growth of flow disturbances in triggering a Rijke tube combustion instability. Combust. Flame 159 (6), 21262137.CrossRefGoogle Scholar
Supplementary material: PDF

Magri and Juniper supplementary material

Magri and Juniper supplementary material

Download Magri and Juniper supplementary material(PDF)
PDF 97.4 KB