Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-13T08:29:20.611Z Has data issue: false hasContentIssue false

Generalized transport characterizations for short oceanic internal waves in a sea of long waves

Published online by Cambridge University Press:  24 May 2024

Yuri V. Lvov*
Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Kurt L. Polzin
Affiliation:
Woods Hole Oceanographic Institution, MS#21, Woods Hole, MA 02543, USA
*
Email address for correspondence: [email protected]

Abstract

Wave turbulence provides a conceptual framework for weakly nonlinear interactions in dispersive media. Dating from five decades ago, applications of wave turbulence theory to oceanic internal waves assigned a leading-order role to interactions characterized by a near equivalence between the group velocity of high-frequency internal waves with the phase velocity of near-inertial waves. This scale-separated interaction leads to a Fokker–Planck (generalized diffusion) equation. More recently, starting four decades ago, this scale-separated paradigm has been investigated using ray tracing methods. These ray methods characterize spectral transport of energy by counting the amplitude and net velocity of wave packets in phase space past a high-wavenumber gate prior to ‘breaking’. This explicitly advective characterization is based on an intuitive assignment and lacks theoretical underpinning. When one takes an estimate of the net spectral drift from the wave turbulence derivation and makes the corresponding assessment, one obtains a prediction of spectral transport that is an order of magnitude larger than either observations or reported ray tracing estimates. Motivated by this contradiction, we report two parallel derivations for transport equations describing the refraction of high-frequency internal waves in a sea of random inertial waves. The first uses standard wave turbulence techniques and the second is an ensemble-averaged packet transport equation characterized by the dispersion of wave packets about a mean drift in the spectral domain. The ensemble-averaged transport equation for ray tracing differs in that it contains the intuitively motivated advective term. We conclude that the aforementioned contradiction between theory, numerics and observations needs to be taken at face value and present a pathway for resolving this contradiction.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbic, B.K., et al. 2018 A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. In New Frontiers in Operational Oceanography (ed. Chassignet, E.P., Pascual, A., Tintoré, J. & Verron, J.), chap. 13. GODAE OceanView.Google Scholar
Armi, L. 1979 Effects of variations in eddy diffusivity on property distributions in the oceans. J. Mar. Res. 37 (3), 515–530.Google Scholar
Bennett, A.F. 1984 Relative dispersion: local and nonlocal dynamics. J. Atmos. Sci. 41, 8811886.2.0.CO;2>CrossRefGoogle Scholar
Bühler, O. & McIntyre, M.E. 2005 Wave capture and wave-vortex duality. J. Fluid Mech. 534, 6795.CrossRefGoogle Scholar
Cohen, L. & Lee, C. 1990 Instantaneous bandwidth for signals and spectrogram. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, pp. 2451–2454.Google Scholar
Davis, R. 1991 Observing the general circulation with floats. Deep-Sea Res. 38, S531S571.CrossRefGoogle Scholar
Dematteis, G. & Lvov, Y. 2021 Downscale energy fluxes in scale invariant oceanic internal wave turbulence. J. Fluid Mech. 915, A129.CrossRefGoogle Scholar
Dematteis, G., Polzin, K.L. & Lvov, Y.V. 2022 On the origins of the oceanic ultraviolet catastrophe. J. Phys. Oceanogr. 51, 597–616.CrossRefGoogle Scholar
Deng, Y. & Hani, Z. 2023 Full derivation of the kinetic equation. Invent. Math. 233, 543–724.Google Scholar
Dong, W., Bühler, O. & Smith, K.S. 2020 Frequency diffusion of waves by unsteady flows. J. Fluid Mech. 905, R3.CrossRefGoogle Scholar
Dosser, H. & Sutherland, B. 2011 Anelastic internal wave packet evolution and stability. J. Atmos. Sci. 68, 28442859.CrossRefGoogle Scholar
Garrett, C.J.R. & Munk, W.H. 1972 Space-time scales of internal waves. Geophys. Fluid Dyn. 3, 225264.CrossRefGoogle Scholar
Garrett, C.J.R. & Munk, W.H. 1979 Internal waves in the ocean. Annu. Rev. Fluid Mech. 11, 339369.CrossRefGoogle Scholar
Gershgorin, B., Lvov, Y.V. & Nazarenko, S. 2009 Canonical Hamiltonians for waves in inhomogeneous media. J. Math. Phys. 50, 013527.CrossRefGoogle Scholar
Gregg, M.C. 1989 Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94, 96869698.CrossRefGoogle Scholar
Haynes, P.H. & McIntyre, M.E. 1987 On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44, 828841.2.0.CO;2>CrossRefGoogle Scholar
Henyey, F.S., Wright, J. & Flatté, S.M. 1986 Energy and action flow through the internal wave field. An eikonal approach. J. Geophys. Res. 91, 84878495.CrossRefGoogle Scholar
Henyey, F.S. & Pomphrey, N. 1983 Eikonal description of internal wave interactions: a non-diffusive picture of “induced diffusion”. Dyn. Atmos. Oceans 7, 189208.CrossRefGoogle Scholar
Henyey, F.S., Pomphrey, N. & Meiss, J.D. 1984 Comparison of short-wavelength internal wave transport theories. LJI-R-84-248, La Jolla Institute.Google Scholar
Högström, U.L.F. 1996 Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol. 78, 215246.CrossRefGoogle Scholar
Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906914.2.0.CO;2>CrossRefGoogle Scholar
Holloway, G. 1982 On interaction timescales of oceanic internal waves. J. Phys. Oceanogr. 12, 293296.2.0.CO;2>CrossRefGoogle Scholar
Holloway, G. & Hendershott, M.C. 1977 Stochastic closure for nonlinear Rossby waves. J. Fluid Mech. 82, 747765.CrossRefGoogle Scholar
Ijichi, T. & Hibiya, T. 2017 Eikonal calculations for energy transfer in the deep-ocean internal wave field near mixing hotspots. J. Phys. Oceanogr. 47, 199210.CrossRefGoogle Scholar
Kafiabad, H.A., Savva, A., Miles, A.C. & Vanneste, J. 2019 Diffusion of inertia-gravity waves by geostrophic turbulence. J. Fluid Mech. 869, R7.CrossRefGoogle Scholar
Kraichnan, R.H. 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497543.CrossRefGoogle Scholar
Kraichnan, R.H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575598.CrossRefGoogle Scholar
Lanchon, N. & Cortet, P.-P. 2023 Energy spectra of non-local internal gravity wave turbulence. Phys. Rev. Lett. 131, 264001.CrossRefGoogle Scholar
Ledwell, J.R., Watson, A.J. & Law, C.S. 1998 Mixing of a tracer in the pycnocline. J. Geophys. Res.: Oceans 103, 2149921529.CrossRefGoogle Scholar
Lvov, V.S., Lvov, Y.V., Newell, A.C. & Zakharov, V.E. 1997 Statistical description of acoustic turbulence. Phys. Rev. E 56, 390405.CrossRefGoogle Scholar
Lvov, Y.V. & Tabak, E.G. 2001 Hamiltonian formalism and the Garrett and Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87, 169501.CrossRefGoogle ScholarPubMed
Lvov, Y.V. & Tabak, E.G. 2004 A Hamiltonian formulation for long internal waves. Physica D 195, 106122.CrossRefGoogle Scholar
Lvov, Y.V., Polzin, K.L., Tabak, E.G. & Yokoyama, N. 2010 Oceanic internal wavefield: theory of scale-invariant spectra. J. Phys. Oceanogr. 40, 26052623.CrossRefGoogle Scholar
Lvov, Y.V., Polzin, K.L. & Yokoyama, N. 2012 Resonant and near-resonant internal wave interractions. J. Phys. Oceanogr. 42, 669691.CrossRefGoogle Scholar
Lvov, V.S. & Rubenchik, A.M. 1977 Spatially non-uniform singular weak turbulence spectra. Sov. Phys. JETP 45, 67. Also at V.S. Lvov, Fundamentals of Nonlinear Physics, Lecture Notes, Eqs. (7.7)–(7.8), www.lvov.weizmann.ac.il.Google Scholar
McComas, C.H. 1977 Equilibrium mechanisms within the oceanic internal wavefield. J. Phys. Oceanogr. 7, 836845.2.0.CO;2>CrossRefGoogle Scholar
McComas, C.H. & Bretherton, F.P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 83, 13971412.CrossRefGoogle Scholar
McComas, C.H. & Müller, P. 1981 a Timescales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr. 11, 139147.2.0.CO;2>CrossRefGoogle Scholar
McComas, C.H. & Müller, P. 1981 b The dynamic balance of internal waves. J. Phys. Oceanogr. 11, 970986.2.0.CO;2>CrossRefGoogle Scholar
Müller, P. 1976 On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech. 77, 789823.Google Scholar
Müller, P., Holloway, G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24, 493536.CrossRefGoogle Scholar
Nazarenko, S.V., Newell, A.C. & Galtier, S.V. 2001 Nonlocal MHD turbulence. Physica D 152–153, 646652.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence. Springer Science & Business Media.CrossRefGoogle Scholar
Newell, A.C. 1968 The closure problem in a system of random gravity waves. Rev. Geophys. 6, 131.CrossRefGoogle Scholar
Pan, Y., Arbic, B.K., Nelson, A.D., Menemenlis, D., Peltier, W.R., Xu, W. & Li, Y. 2020 Numerical investigation of mechanisms underlying oceanic internal gravity wave power-law spectra. J. Phys. Oceanogr. 50, 27132733.CrossRefGoogle Scholar
Polzin, K.L. 2004 A heuristic description ofinternal wave dynamics. J. Phys. Oceanogr. 34 (1), 214230.2.0.CO;2>CrossRefGoogle Scholar
Polzin, K.L., Toole, J.M. & Schmitt, R.W. 1995 Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr. 25, 306328.2.0.CO;2>CrossRefGoogle Scholar
Polzin, K.L. 2010 Mesoscale-eddy internal wave coupling. II. Energetics and results from polymode. J. Phys. Oceanogr. 40, 789801.CrossRefGoogle Scholar
Polzin, K.L. & Lvov, Y.S. 2011 Toward regional characterizations of the oceanic internal wave spectrum. Rev. Geophys. 49, RG4003.CrossRefGoogle Scholar
Polzin, K.L., Naveira Garabato, A.C., Sloyan, B.M., Huussen, T. & Waterman, S.N. 2014 Finescale parameterizations of turbulent dissipation. J. Geophys. Res. 119, 13831419.CrossRefGoogle Scholar
Polzin, K.L. & Lvov, Y.S. 2017 An oceanic ultra-violet catastrophe, wave-particle duality and a strongly nonlinear concept for geophysical turbulence. Fluids 2, 36.CrossRefGoogle Scholar
Polzin, K. & Lvov, Y. 2023 Scale separated interactions of oceanic internal waves: a one-dimensional model. J. Phys. Oceanogr. (submitted). arXiv:2204.00069.Google Scholar
Pomphrey, N., Meiss, J.D. & Watson, K.M. 1980 Description of nonlinear internal wave interactions using Langevin methods. J. Geophys. Res. 85, 10851094.CrossRefGoogle Scholar
Sun, H. & Kunze, E. 1999 a Internal wave–wave interactions. Part I: the role of internal wave vertical divergence. J. Phys. Oceanogr. 29, 28862904.2.0.CO;2>CrossRefGoogle Scholar
Sun, H. & Kunze, E. 1999 b Internal wave–wave interactions. Part II: spectral energy transfer and turbulence production. J. Phys. Oceanogr. 29, 29052919.2.0.CO;2>CrossRefGoogle Scholar
Taylor, G.I. 1921 Diffusion by continuous movements.Google Scholar
Villas Bôas, A.B. & Young, W.R. 2020 Directional diffusion of surface gravity wave action by ocean macroturbulence. J. Fluid Mech. 890, R3.CrossRefGoogle Scholar
Witham, G.B. 1974 Linear and Nonlinear Waves, p. 636. Wiley-Interscience.Google Scholar
Young, W.R. & Jelloul, M.B. 1997 Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 55, 735766.CrossRefGoogle Scholar
Zakharov, V.E., Lvov, V.S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence. Springer.CrossRefGoogle Scholar