Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:20:09.971Z Has data issue: false hasContentIssue false

General variational model reduction applied to incompressible viscous flows

Published online by Cambridge University Press:  25 December 2008

THORSTEN BOGNER*
Affiliation:
Theoretical Physics, Universität Bielefeld, 33615 Bielefeld, [email protected]
*
Email address for correspondence: [email protected]

Abstract

In this paper, a method is introduced that allows calculation of an approximate proper orthogonal decomposition (POD) without the need to perform a simulation of the full dynamical system. Our approach is based on an application of the density matrix renormalization group (DMRG) to nonlinear dynamical systems, but has no explicit restriction on the spatial dimension of the model system. The method is not restricted to fluid dynamics. The applicability is exemplified on the incompressible Navier–Stokes equation in two spatial dimensions. Merging of two equal-signed vortices with periodic boundary conditions is considered for low Reynolds numbers Re≤800 using a spectral method. We compare the accuracy of a reduced model, obtained by our method, with that of a reduced model obtained by standard POD. To this end, error functionals for the reductions are evaluated. It is observed that the proposed method is able to find a reduced system that yields comparable or even superior accuracy with respect to standard POD method results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antoulas, A. C. 2005 Approximation of Large-Scale Dynamical Systems. Cambridge University Press.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1998 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics.Google Scholar
Bogner, T. 2007 Density matrix renormalization for model reduction in nonlinear dynamics. ArXiv Physics e-prints ArXiv:0707.4384v1.CrossRefGoogle Scholar
Bui-Thanh, T., Damodaran, M. & Willcox, K. 2003 Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics. AIAA Paper 4213.CrossRefGoogle Scholar
Dritschel, D. G. & Legras, B. 1993 Modeling oceanic and atmospheric vortices. Phys. Today 46, 4451.CrossRefGoogle Scholar
van de Fliert, B. W., van Groesen, E., de Roo, R. & de Vries, R. W. 1995 Numerical algorithm for the calculation of nonsymmetric dipolar and rotating monopolar vortex structures. J. Comput. Appl. Math. 62, 125.CrossRefGoogle Scholar
Gentry, R., Martin, R. & Daly, B. 1966 An Eulerian differencing method for unsteady compressible flow problems. J. Comput. Phys. 1, 87118.CrossRefGoogle Scholar
Golub, G. H. & VanLoan, C. F.3rd Edition 1996 Matrix Computations. Johns Hopkins University Press.Google Scholar
Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Application. SIAM.CrossRefGoogle Scholar
Hasegawa, A. 1985 Self-organization processes in continuous media. Adv. Phys. 34, 142.CrossRefGoogle Scholar
van Heijst, G. 1993 Self-organization of two-dimensional flows. Nederlands Tijdschrift voor Natuurkunde 59, 321325.Google Scholar
Huber, M., McWilliams, J. C. & Ghil, M. 2001 A climatology for turbulent dispersion in the troposphere. J. Atmos. Sci. 58, 23772394.2.0.CO;2>CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. 1990 High-order splitting methods for the incompressible Navier–Stokes equation. J. Comput. Phys. 97, 414443.CrossRefGoogle Scholar
Kraichnan, R. H. & Montgomery, D. 1980 Two-dimensional turbulence. Reports Prog. Phys. 43, 547619.CrossRefGoogle Scholar
Landau, L. D., Lifschitz, E. M. & Weller, W. 1991 Hydrodynamik, 5th rev. edn.Akademie-Verlag.Google Scholar
Leipholz, H. 1974 Theory of Elasticity. Leyden, Noordhoff.CrossRefGoogle Scholar
Lorenz, E. N. 1956 Empirical orthogonal functions and statistical weather prediction. Scientific Report 1, Statistical Forecasting Project MIT.Google Scholar
Lumley, J. L. 1967 The Structure of Inhomogeneous Turbulent Flows. Nauka.Google Scholar
Martín-Delgado, M. A., Rodríguez-Laguna, J. & Sierra, G. 2001 Single-block renormalization group: quantum mechanical problems. Nucl. Phys. B 601, 569590.CrossRefGoogle Scholar
Nielsen, A. H., He, X., Rasmussen, J. J. & Bohr, T. 1996 Vortex merging and spectral cascade in two-dimensional flows. Phys. Fluids 8 (9), 22632265.CrossRefGoogle Scholar
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.CrossRefGoogle Scholar
Noack, B., Papas, P. & Monkewitz, P. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.CrossRefGoogle Scholar
Rowley, C. W., Colonius, T. & Murray, R. M. 2003 Model reduction of compressible flows using POD and Garlerkin projection. Phys. D 189, 115129.Google Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Math. XLV, 561591.CrossRefGoogle Scholar
Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Glauser, M. & Bonnet, J. 2001 Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamic systems model. J. Fluid Mech. 441, 67108.CrossRefGoogle Scholar