Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-16T16:15:43.613Z Has data issue: false hasContentIssue false

Gauge freedom and objective rates in fluid deformable surfaces

Published online by Cambridge University Press:  14 March 2025

Joseph Pollard*
Affiliation:
School of Physics, UNSW, Sydney, NSW 2052, Australia EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, NSW 2052, Australia
Sami C. Al-Izzi*
Affiliation:
School of Physics, UNSW, Sydney, NSW 2052, Australia ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, UNSW, Sydney, NSW 2052, Australia
Richard G. Morris*
Affiliation:
School of Physics, UNSW, Sydney, NSW 2052, Australia EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, NSW 2052, Australia ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, UNSW, Sydney, NSW 2052, Australia
*
Corresponding authors: Joseph Pollard, [email protected]; Sami C. Al-Izzi, [email protected]; Richard G. Morris, [email protected]
Corresponding authors: Joseph Pollard, [email protected]; Sami C. Al-Izzi, [email protected]; Richard G. Morris, [email protected]
Corresponding authors: Joseph Pollard, [email protected]; Sami C. Al-Izzi, [email protected]; Richard G. Morris, [email protected]

Abstract

Morphodynamic descriptions of fluid deformable surfaces are relevant for a range of biological and soft matter phenomena, spanning materials that can be passive or active, as well as ordered or topological. However, a principled, geometric formulation of the correct hydrodynamic equations has remained opaque, with objective rates proving a central, contentious issue. We argue that this is due to a conflation of several important notions that must be disambiguated when describing fluid deformable surfaces. These are the Eulerian and Lagrangian perspectives on fluid motion, and three different types of gauge freedom: in the ambient space; in the parameterisation of the surface; and in the choice of frame field on the surface. We clarify these ideas, and show that objective rates in fluid deformable surfaces are time derivatives that are invariant under the first of these gauge freedoms, and which also preserve the structure of the ambient metric. The latter condition reduces a potentially infinite number of possible objective rates to only two: the material derivative and the Jaumann rate. The material derivative is invariant under the Galilean group, and therefore applies to velocities, whose rate captures the conservation of momentum. The Jaumann derivative is invariant under all time-dependent isometries, and therefore applies to local order parameters, or symmetry-broken variables, such as the nematic $Q$-tensor. We provide examples of material and Jaumann rates in two different frame fields that are pertinent to the current applications of the fluid mechanics of deformable surfaces.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Al-Izzi, S.C. & Alexander, G.P. 2023 Chiral active membranes: odd mechanics, spontaneous flows, and shape instabilities. Phys. Rev. Res. 5 (4), 043227.CrossRefGoogle Scholar
Al-Izzi, S.C. & Morris, R.G. 2021 Active flows and deformable surfaces in development. Semin. Cell Dev. Biol. 120, 4452.CrossRefGoogle ScholarPubMed
Al-Izzi, S.C. & Morris, R.G. 2023 Morphodynamics of active nematic fluid surfaces. J. Fluid Mech. 957, A4.CrossRefGoogle Scholar
Al-Izzi, S.C., Sens, P. & Turner, M.S. 2020 a Shear-driven instabilities of membrane tubes and dynamin-induced scission. Phys. Rev. Lett. 125 (1), 018101.CrossRefGoogle ScholarPubMed
Al-Izzi, S.C., Sens, P., Turner, M.S. & Komura, S. 2020 b Dynamics of passive and active membrane tubes. Soft Matt. 16 (40), 93199330.CrossRefGoogle ScholarPubMed
Alert, R. 2022 Fingering instability of active nematic droplets. J. Phys. A: Math. Theor. 55 (23), 234009.CrossRefGoogle Scholar
Arnold, V. I. 2014 Vladimir I. Arnold - Collected Works: Hydrodynamics, Bifurcation Theory, and Algebraic Geometry 1965-1972. Springer.CrossRefGoogle Scholar
Arnold, V. I. & Khesin, B. A. 2021 Topological methods in hydrodynamics. In Applied Mathematical Sciences, vol. 125. Springer International Publishing.Google Scholar
Bell, S., Lin, S.-Z., Rupprecht, J.-F. & Prost, J. 2022 Active nematic flows over curved surfaces. Phys. Rev. Lett. 129 (11), 118001.CrossRefGoogle ScholarPubMed
Blanch-Mercader, C., Guillamat, P., Roux, A. & Kruse, K. 2021 a Integer topological defects of cell monolayers: mechanics and flows. Phys. Rev. E 103 (1), 012405.CrossRefGoogle ScholarPubMed
Blanch-Mercader, C., Guillamat, P., Roux, A. & Kruse, K. 2021 b Quantifying material properties of cell monolayers by analyzing integer topological defects. Phys. Rev. Lett. 126 (2), 028101.CrossRefGoogle ScholarPubMed
Boedec, G., Jaeger, M. & Leonetti, M. 2014 Pearling instability of a cylindrical vesicle. J. Fluid Mech. 743, 262279.CrossRefGoogle Scholar
Bächer, C., Khoromskaia, D., Salbreux, G. & Gekle, S. 2021 A three-dimensional numerical model of an active cell cortex in the viscous limit. Front. Phys. 9, 753230.CrossRefGoogle Scholar
Cartan, E. 1945 Les Systèmes Differentiels Extérieurs et Leur Applications géométriques. Hermann & cie.Google Scholar
Casey, J. & Papadopoulos, P. 2002 Material transport of sets and fields. Math. Mech. Solids 7 (6), 647676.CrossRefGoogle Scholar
Da, R., Borja, H., Bleyer, J. & Turlier, H. 2022 A viscous active shell theory of the cell cortex. J. Mech. Phys. Solids 164, 104876.Google Scholar
Da, S., Luiz, C. & Efrati, E. 2021 Moving frames and compatibility conditions for three-dimensional director fields. New J. Phys. 23 (6), 063016.Google Scholar
deGennes, P.-G. & Prost, J. 2013 The Physics of Liquid Crystals. International series of monographs on physics 83, 2nd edn. Clarendon Press,Google Scholar
Edwards, B.J. & Beris, A.N. 2023 Oldroyd’s convected derivatives derived via the variational action principle and their corresponding stress tensors. J. Non-Newtonian Fluid Mech. 316, 105035.CrossRefGoogle Scholar
Ellis, P.W., Pearce, D.J.G., Chang, Y.-W., Goldsztein, G., Giomi, L. & Fernandez-Nieves, A. 2018 Curvature-induced defect unbinding and dynamics in active nematic toroids. Nat. Phys. 14 (1), 8590.CrossRefGoogle Scholar
Feng, F., Dradrach, K., Zmyślony, M., Barnes, M. & Biggins, J.S. 2024 Geometry, mechanics and actuation of intrinsically curved folds. Soft Matt. 20 (9), 21322140.CrossRefGoogle ScholarPubMed
Fiala, Z. 2011 Geometrical setting of solid mechanics. Ann. Phys. 326 (8), 19831997.CrossRefGoogle Scholar
Frankel, T. 2011 The Geometry of Physics: An Introduction. 3rd edn. Cambridge University Press.CrossRefGoogle Scholar
Hinch, J. & Harlen, O. 2021 Oldroyd B, and not A? J. Non-Newtonian Fluid Mech. 298, 104668.CrossRefGoogle Scholar
Hoffmann, L.A., Carenza, L.N., Eckert, J. & Giomi, L. 2022 Theory of defect-mediated morphogenesis. Sc. Adv. 8 (15), eabk2712.CrossRefGoogle ScholarPubMed
Hoffmann, L.A., Carenza, L.N. & Giomi, L. 2023 Tuneable defect-curvature coupling and topological transitions in active shells. Soft Matt. 19 (19), 34233435.CrossRefGoogle ScholarPubMed
Hohenberg, P. & Halperin, B. 1977 Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (3), 435479.CrossRefGoogle Scholar
Jaumann, G. 1911 Geschlossenes system physikalischer und chemischer differentialgesetze. Akad. Wiss. Wein (IIa) 120, 385530.Google Scholar
Jülicher, F., Grill, S.W. & Salbreux, G. 2018 Hydrodynamic theory of active matter. Rep. Prog. Phys. 81 (7), 076601.CrossRefGoogle ScholarPubMed
Keber, F.C., Loiseau, E., Sanchez, T., DeCamp, S.J., Giomi, L., Bowick, M.J., Marchetti, M., Dogic, Z. & Bausch, A.R. 2014 Topology and dynamics of active nematic vesicles. Science 345 (6201), 11351139.CrossRefGoogle ScholarPubMed
Khoromskaia, D. & Alexander, G.P. 2017 Vortex formation and dynamics of defects in active nematic shells. New J. Phys. 19 (10), 103043.CrossRefGoogle Scholar
Khoromskaia, D. & Salbreux, G. 2023 Active morphogenesis of patterned epithelial shells. eLife 12, e75878.CrossRefGoogle ScholarPubMed
de Kinkelder, E., Sagis, L. & Aland, S. 2021 A numerical method for the simulation of viscoelastic fluid surfaces. J. Comput. Phys. 440, 110413.CrossRefGoogle Scholar
Kolev, B. & Desmorat, R. 2021 Objective rates as covariant derivatives on the manifold of Riemannian metrics.Google Scholar
Kruse, K., Joanny, J., Jülicher, F., Prost, J. & Sekimoto, K. 2005 Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E 16 (1), 516.CrossRefGoogle ScholarPubMed
Lomholt, M. A. 2006 a Fluctuation spectrum of quasispherical membranes with force-dipole activity. Phys. Rev. E 73 (6), 061914.CrossRefGoogle ScholarPubMed
Lomholt, M. A. 2006 b Mechanics of nonplanar membranes with force-dipole activity. Phys. Rev. E 73 (6), 061913.CrossRefGoogle ScholarPubMed
Lomholt, M.A. & Miao, L. 2006 Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives. J. Phys. A: Math. Gen. 39 (33), 1032310354.CrossRefGoogle Scholar
Marsden, J. E. & Hughes, T. J. 1994 Mathematical Foundations of Elasticity. Dover.Google Scholar
Masur, E. 1961 On the definition of stress rate. Q. Appl. Maths 19 (2), 160163.CrossRefGoogle Scholar
Metselaar, L., Yeomans, J.M. & Doostmohammadi, A. 2019 Topology and morphology of self-deforming active shells. Phys. Rev. Lett. 123 (20), 208001.CrossRefGoogle ScholarPubMed
Modes, C., Bhattacharya, K. & Warner, M. 2011 Gaussian curvature from flat elastica sheets. Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 467 (218), 11211140.Google Scholar
Modes, C. & Warner, M. 2011 Blueprinting nematic glass: systematically constructing and combining active points of curvature for emergent morphology. Phys. Rev. E 84 (2), 021711.CrossRefGoogle ScholarPubMed
Monge, G. 2020 Application de l’analyse à la géométrie. Bachelier.Google Scholar
Morris, R.G. & Rao, M. 2019 Active morphogenesis of epithelial monolayers. Phys. Rev. E 100 (2), 022413.CrossRefGoogle ScholarPubMed
Morris, R.G. & Turner, M.S. 2015 Mobility measurements probe conformational changes in membrane proteins due to tension. Phys. Rev. Lett. 115 (19), 198101.CrossRefGoogle ScholarPubMed
Mostajeran, C., Warner, M. & Modes, C.D. 2017 Frame, metric and geodesic evolution in shape-changing nematic shells. Soft Matt. 13 (46), 88588863.CrossRefGoogle ScholarPubMed
Naber, G. L. 2011 a Topology, geometry and gauge fields: foundations. Texts in Applied Mathematics, vol. 25. Springer New York.Google Scholar
Naber, G. L. 2011 b Topology, geometry and gauge fields: interactions. Applied Mathematical Sciences, vol. 141. Springer New York.Google Scholar
Napoli, G. & Vergori, L. 2012 Extrinsic curvature effects on nematic shells. Phys. Rev. Lett. 108 (20), 207803.CrossRefGoogle ScholarPubMed
Napoli, G. & Vergori, L. 2016 Hydrodynamic theory for nematic shells: the interplay among curvature, flow, and alignment. Phys. Rev. E 94 (2), 020701.CrossRefGoogle ScholarPubMed
Nestler, M. & Voigt, A. 2022 Active nematodynamics on curved surfaces - the influence of geometric forces on motion patterns of topological defects. Commun. Comput. Phys. 31 (3), 947965.CrossRefGoogle Scholar
Nitschke, I. & Voigt, A. 2022 Observer-invariant time derivatives on moving surfaces. J. Geom. Phys. 173, 104428.CrossRefGoogle Scholar
Nitschke, I. & Voigt, A. 2023 Tensorial time derivatives on moving surfaces: general concepts and a specific application for surface Landau-de gennes models. J. Geom. Phys. 194, 105002.CrossRefGoogle Scholar
Oldroyd, J. 1950 On the formulation of rheological equations of state.. Proc. R. Soc. Lond. A: Math. Phys. Sci. 200, 523541.Google Scholar
Pearce, D., Ellis, P., Fernandez-Nieves, A. & Giomi, L. 2019 Geometrical control of active turbulence in curved topographies. Phys. Rev. Lett. 122 (16), 168002.CrossRefGoogle ScholarPubMed
Pearce, D., Nambisan, J., Ellis, P., Fernandez-Nieves, A. & Giomi, L. 2021 Orientational correlations in active and passive nematic defects. Phys. Rev. Lett. 127 (19), 197801.CrossRefGoogle ScholarPubMed
Pearce, D., Gat, S., Livne, G., Bernheim-Groswasser, A. & Kruse, K. 2022 Defect-driven shape transitions in elastic active nematic shells. arXiv:2010.13141.Google Scholar
Pollard, J. & Alexander, G.P. 2021 Intrinsic geometry and director reconstruction for three-dimensional liquid crystals. New J. Phys. 23 (6), 063006.CrossRefGoogle Scholar
Prager, W. 1961 An elementary discussion of definitions of stress rate. Q. Appl. Maths 18 (4), 403407.CrossRefGoogle Scholar
Rangamani, P., Agrawal, A., Mandadapu, K.K., Oster, G. & Steigmann, D.J. 2013 Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 12 (4), 833845.CrossRefGoogle ScholarPubMed
Rank, M. & Voigt, A. 2021 Active flows on curved surfaces. Phys. Fluids 33 (7), 072110.CrossRefGoogle Scholar
Rougée, P. 2006 An intrinsic lagrangian statement of constitutive laws in large strain. Comput. Struct. 84 (17-18), 11251133.CrossRefGoogle Scholar
Sahu, A. 2022 Irreversible thermodynamics and hydrodynamics of biological membranes. PhD thesis, University of California, Berkeley, USA.Google Scholar
Sahu, A., Glisman, A., Tchoufag, J. & Mandadapu, K.K. 2020 a Geometry and dynamics of lipid membranes: the scriven-love number. Phys. Rev. E 101 (5), 052401.CrossRefGoogle ScholarPubMed
Sahu, A., Omar, Y.A., Sauer, R.A. & Mandadapu, K.K. 2020 b Arbitrary Lagrangian–Eulerian finite element method for curved and deforming surfaces. J. Comput. Phys. 407, 109253.CrossRefGoogle Scholar
Sahu, A., Sauer, R.A. & Mandadapu, K.K. 2017 Irreversible thermodynamics of curved lipid membranes. Phys. Rev. E 96 (4), 042409.CrossRefGoogle ScholarPubMed
Salbreux, G. & Jülicher, F. 2017 Mechanics of active surfaces. Phys. Rev. E 96 (3), 032404.CrossRefGoogle ScholarPubMed
Salbreux, G., Jülicher, F., Prost, J. & Callan-Jones, A. 2022 Theory of nematic and polar active fluid surfaces. Phys. Rev. Res. 4 (3), 033158.CrossRefGoogle Scholar
Sanchez, T., Chen, D.T.N., DeCamp, S.J., Heymann, M. & Dogic, Z. 2012 Spontaneous motion in hierarchically assembled active matter. Nature 491 (7424), 431434.CrossRefGoogle ScholarPubMed
Simon, C., et al. 2019 Actin dynamics drive cell-like membrane deformation. Nat. Phys. 15 (6), 602609.CrossRefGoogle Scholar
Stewart, I.W. 2019 The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction. 0th edn. CRC Press.CrossRefGoogle Scholar
Stone, H.A., Shelley, M.J. & Boyko, E. 2023 A note about convected time derivatives for flows of complex fluids. Soft Matt. 19 (28), 53535359.CrossRefGoogle ScholarPubMed
Tchoufag, J., Sahu, A. & Mandadapu, K.K. 2022 Absolute vs convective instabilities and front propagation in lipid membrane tubes. Phys. Rev. Lett. 128 (6), 068101.CrossRefGoogle ScholarPubMed
Torres-Sánchez, A., Millán, D. & Arroyo, M. 2019 Modelling fluid deformable surfaces with an emphasis on biological interfaces. J. Fluid Mech. 872, 218271.CrossRefGoogle Scholar
Torres-Sánchez, A., Santos-Oliván, D. & Arroyo, M. 2020 Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations. J. Comput. Phys. 405, 109168.CrossRefGoogle Scholar
Vafa, F. & Mahadevan, L. 2022 Active nematic defects and epithelial morphogenesis. Phys. Rev. Lett. 129 (9), 098102.CrossRefGoogle ScholarPubMed
Vafa, F. & Mahadevan, L. 2023 Statics and diffusive dynamics of surfaces driven by p -atic topological defects. Soft Matt. 19 (35), 66526663.CrossRefGoogle ScholarPubMed
Waxman, A. M. 1984 Dynamics of a couple-stress fluid membrane. Stud. Appl. Maths 70 (1), 6386.CrossRefGoogle Scholar
Yavari, A., Ozakin, A. & Sadik, S. 2016 Nonlinear elasticity in a deforming ambient space. J. Nonlinear Sci. 26 (6), 16511692.CrossRefGoogle Scholar