Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:11:39.976Z Has data issue: false hasContentIssue false

A fully adaptive wavelet-based approach to homogeneous turbulence simulation

Published online by Cambridge University Press:  08 February 2012

G. De Stefano
Affiliation:
Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università di Napoli, I-81031 Aversa, Italy
O. V. Vasilyev*
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
*
Email address for correspondence: [email protected]

Abstract

The ability of wavelet multi-resolution analysis to detect and track the energy-containing motions that govern the dynamics of a fluid flow offers a unique hierarchical framework for modelling and simulating turbulence. In this paper, the role of the wavelet thresholding level in wavelet-based modelling and simulation of turbulent flows is systematically examined. The thresholding level controls the relative importance of resolved energetic structures and residual unresolved background flow and, thus, the achieved turbulence resolution. A fully adaptive eddy capturing approach is developed that allows variable-fidelity numerical simulations of turbulence to be performed. The new method is based on wavelet filtering with time-varying thresholding. The thresholding level automatically adapts to the desired turbulence resolution during the simulation. The filtered governing equations supplemented by a localized dynamic energy-based closure model are solved numerically using the adaptive wavelet collocation method. The approach is successfully tested in the numerical simulation of both linearly forced and freely decaying homogeneous turbulence.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. De Stefano, G., Goldstein, D. E. & Vasilyev, O. V. 2005 On the role of sub-grid scale coherent modes in large eddy simulation. J. Fluid Mech. 525, 263274.CrossRefGoogle Scholar
2. De Stefano, G. & Vasilyev, O. V. 2010 Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence. J. Fluid Mech. 646, 453470.CrossRefGoogle Scholar
3. De Stefano, G., Vasilyev, O. V. & Goldstein, D. E. 2008 Localized dynamic kinetic energy-based models for stochastic coherent adaptive large eddy simulation. Phys. Fluids 20 (4), 045102.Google Scholar
4. Donoho, D. L. & Johnstone, I. M. 1994 Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425455.CrossRefGoogle Scholar
5. Farge, M., Schneider, K. & Kevlahan, N. 1999 Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11 (8), 21872201.Google Scholar
6. Geurts, B. J. & Fröhlich, J. 2002 A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14 (6), L41L44.Google Scholar
7. Ghosal, S., Lund, T. S., Moin, P. & Akselvoll, K. 1995 A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229255.Google Scholar
8. Goldstein, D. E. & Vasilyev, O. V. 2004 Stochastic coherent adaptive large eddy simulation method. Phys. Fluids 16 (7), 24972513.CrossRefGoogle Scholar
9. Goldstein, D. E., Vasilyev, O. V. & Kevlahan, N. K. R. 2005 CVS and SCALES simulation of 3D isotropic turbulences. J. Turbul. 6 (37), 120.Google Scholar
10. Haselbacher, A. & Vasilyev, O. V. 2003 Commutative discrete filtering on unstructured grids based on least-squares techniques. J. Comput. Phys. 187 (1), 197211.CrossRefGoogle Scholar
11. Kevlahan, N. K. R. & Vasilyev, O. V. 2005 An adaptive wavelet collocation method for fluid–structure interaction at high Reynolds numbers. SIAM J. Sci. Comput. 26 (6), 18941915.CrossRefGoogle Scholar
12. Lundgren, T. S. 2003 Linearly forced isotropic turbulence. In Annual Research Briefs, Center for Turbulence Research, pp. 461473. Stanford University.Google Scholar
13. Machiels, L. 1997 Predictability of small-scale motion in isotropic fluid turbulence. Phys. Rev. Lett. 79, 34113414.CrossRefGoogle Scholar
14. Marsden, A. L., Vasilyev, O. V. & Moin, P. 2002 Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175, 584603.Google Scholar
15. Meyers, J. & Sagaut, P. 2006 On the model coefficients for the standard and the variational multi-scale Smagorinsky model. J. Fluid Mech. 569, 287319.CrossRefGoogle Scholar
16. Pope, S. 2004 Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 124.CrossRefGoogle Scholar
17. Rosales, C. & Meneveau, C. 2005 Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 18.Google Scholar
18. Sagaut, P., Deck, S. & Terracol, M. 2006 Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.Google Scholar
19. Schneider, K. & Vasilyev, O. V. 2010 Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473503.CrossRefGoogle Scholar
20. Terracol, M., Sagaut, P. & Basdevant, C. 2003 A time self-adaptive multilevel algorithm for large-eddy simulation. J. Comput. Phys. 184, 339365.Google Scholar
21. Vasilyev, O. V. 2003 Solving multi-dimensional evolution problems with localized structures using second generation wavelets. Intl J. Comput. Fluid Dyn. 17 (2), 151168.Google Scholar
22. Vasilyev, O. V. & Bowman, C. 2000 Second generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys. 165, 660693.CrossRefGoogle Scholar
23. Vasilyev, O. V., De Stefano, G., Goldstein, D. E. & Kevlahan, N. K. R. 2008 Lagrangian dynamic SGS model for stochastic coherent adaptive large eddy simulation. J. Turbul. 9 (11), 114.Google Scholar
24. Vasilyev, O. V. & Kevlahan, N. K. R. 2005 An adaptive multilevel wavelet collocation method for elliptic problems. J. Comput. Phys. 206 (2), 412431.CrossRefGoogle Scholar
25. Vasilyev, O. V., Lund, T. S. & Moin, P. 1998 A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 105123.CrossRefGoogle Scholar
26. Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.Google Scholar