Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T06:12:55.479Z Has data issue: false hasContentIssue false

Friction properties of superhydrophobic ridges

Published online by Cambridge University Press:  13 March 2020

Hélène de Maleprade
Affiliation:
Physique and Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, PSL research University, 75005Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128Palaiseau, France
Armelle Keiser
Affiliation:
Physique and Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, PSL research University, 75005Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128Palaiseau, France
Christophe Clanet
Affiliation:
Physique and Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, PSL research University, 75005Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128Palaiseau, France
David Quéré*
Affiliation:
Physique and Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, PSL research University, 75005Paris, France LadHyX, UMR 7646 du CNRS, École polytechnique, 91128Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

The extreme mobility of droplets on non-wetting materials implies the necessity of controlling their motion, direction or speed. In this paper, we show how ridges allow us to tune drop friction. Depending on the liquid speed and viscosity, two regimes emerge: fast drops with low viscosity dynamically deform and undergo inertial friction, so that their velocity is eventually fixed by the deformations induced by the ridges; in contrast, viscous drops hardly interact with the texture, so that their velocity is classically limited by viscous dissipation, as on a flat substrate. The transition between these two regimes reveals spectacular morphological changes: drops with intermediate viscosity elongate and adopt worm-like shapes, which we qualitatively describe.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barthlott, W. & Neinhuis, C. 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.CrossRefGoogle Scholar
Bird, J. C., Dhiman, R., Kwon, H.-M. & Varanasi, K. K. 2013 Reducing the contact time of a bouncing drop. Nature 503, 385388.CrossRefGoogle ScholarPubMed
Blossey, R. 2003 Self-cleaning surfaces – virtual realities. Nat. Mater. 2, 301306.CrossRefGoogle ScholarPubMed
Calder, W. A. 1969 Temperature relations and underwater endurance of the smallest homeothermic diver, the water shrew. Compar. Biochem. Phys. 30, 10751082.CrossRefGoogle ScholarPubMed
Carbone, G. & Mangialardi, L. 2015 Hydrophobic properties of a wavy rough substrate. Eur. Phys. J. E 16, 6776.Google Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.CrossRefGoogle Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1: viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Ditsche-Kuru, P., Schneider, E. S., Melskotte, J. E., Brede, M., Leder, A. & Barthlott, W. 2011 Superhydrophobic surfaces of the water bug notonecta glauca: a model for friction reduction and air retention. Beilstein J. Nanotechnology 2, 137144.CrossRefGoogle Scholar
Dupeux, G., Le Merrer, M., Clanet, C. & Quere, D. 2011 Trapping Leidenfrost drops with crenelations. Phys. Rev. Lett. 107, 114503.CrossRefGoogle ScholarPubMed
Flynn, M. R. & Bush, J. W. M. 2008 Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275296.CrossRefGoogle Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
Gross, M., Varnik, F., Raabe, D. & Steinbach, I. 2010 Small droplets on superhydrophobic substrates. Phys. Rev. E 81, 051606.Google ScholarPubMed
Hao, P., Lv, C., Yao, Z. & He, F. 2010 Sliding behavior of water droplet on superhydrophobic surface. Europhys. Lett. 90, 66003.CrossRefGoogle Scholar
Jiang, X. & Li, H. Z. 2017 Liquid drops hurdling barriers of various geometries. Adv. Mater. Interfaces 4, 1700516.CrossRefGoogle Scholar
Johnson, R. E. & Dettre, R. H. 1964 Contact angle, wettability and adhesion. Adv. Chem. Ser. 43, 112135.CrossRefGoogle Scholar
Linke, H., Alemán, B. J., Melling, L. D., Taormina, M. J., Francis, M. J., Dow-Hygelund, C. C., Narayanan, V., Taylor, R. P. & Stout, A. 2006 Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502.CrossRefGoogle ScholarPubMed
Mahadevan, L. & Pomeau, Y. 1999 Rolling droplets. Phys. Fluids 11, 24492453.CrossRefGoogle Scholar
Mouterde, T., Raux, P. S., Clanet, C. & Quere, D. 2019 Superhydrophobic frictions. Proc. Natl Acad. Sci. USA 116, 82208223.CrossRefGoogle ScholarPubMed
Olin, P. H., Lindström, S. B., Pettersson, T. & Wågberg, L. 2013 Water drop friction on superhydrophobic surfaces. Langmuir 29, 90799089.CrossRefGoogle ScholarPubMed
Podgorski, T., Flesselles, J.-M. & Limat, L. 2001 Corners, cusps, and pearls in running drops. Phys. Rev. Lett. 87, 036102.CrossRefGoogle ScholarPubMed
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.CrossRefGoogle Scholar
Sheng, X. & Zhang, J. 2011 Air layer on superhydrophobic surface underwater. Colloids Surf. A 377, 374378.CrossRefGoogle Scholar
Solga, A., Cerman, Z., Striffler, B. F., Spaeth, M. & Barthlott, W. 2007 The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2, S126S134.CrossRefGoogle ScholarPubMed
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.Google Scholar
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28, 988994.CrossRefGoogle Scholar
Yang, C., Tartaglino, U. & Persson, B. N. J. 2006 Influence of surface roughness on superhydrophobicity. Phys. Rev. Lett. 97, 116103.CrossRefGoogle ScholarPubMed
Yariv, E. & Schnitzer, O. 2019 Speed of rolling droplets. Phys. Rev. Fluids 4, 093602.CrossRefGoogle Scholar
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19, 123601.CrossRefGoogle Scholar

de Maleprade et al. supplementary movie 1

Water droplet with volume 100µL deposited on a superhydrophobic track tilted by 10.4°, with texture of wavelength 3 mm and depth 1 mm. The movie is slowed down 100x, and the camera is tilted by the same angle as the track. The vertical orange lines highlight the length over which bulges hit merlons.

Download de Maleprade et al. supplementary movie 1(Video)
Video 568.8 KB

de Maleprade et al. supplementary movie 2

100µL-droplet of viscosity 500 mPa.s, on a superhydrophobic track tilted by 11.5°, with texture of wavelength 3 mm and depth 1 mm. The movie is slowed down 4x, and the camera is tilted by the same angle as the track.

Download de Maleprade et al. supplementary movie 2(Video)
Video 1.8 MB

de Maleprade et al. supplementary movie 3

100µL-droplet of viscosity 2 mPa.s, on a superhydrophobic track tilted by 12.4°, with texture of wavelength 3 mm and depth 1 mm. The movie is slowed down 60x, and the camera is tilted by the same angle as the track.

Download de Maleprade et al. supplementary movie 3(Video)
Video 3.4 MB

de Maleprade et al. supplementary movie 4

100µL-droplet of viscosity 3 mPa.s, on a superhydrophobic track tilted by 12.4°, with texture of wavelength 3 mm and depth 1 mm. The movie is slowed down 60x, and the camera is tilted by the same angle as the track.

Download de Maleprade et al. supplementary movie 4(Video)
Video 2 MB

de Maleprade et al. supplementary movie 5

100µL-droplet of viscosity 5 mPa.s, on a superhydrophobic track tilted by 12.4°, with texture of wavelength 3 mm and depth 1 mm. The movie is slowed down 60x, and the camera is tilted by the same angle as the track.

Download de Maleprade et al. supplementary movie 5(Video)
Video 2.5 MB

de Maleprade et al. supplementary movie 6

100µL-droplet of viscosity 20 mPa.s, on a superhydrophobic track tilted by 12.4°, with texture of wavelength 3 mm and depth 1 mm. The movie is slowed down 60x, and the camera is tilted by the same angle as the track.

Download de Maleprade et al. supplementary movie 6(Video)
Video 5.1 MB

de Maleprade et al. supplementary movie 7

100µL-droplet of viscosity 40 mPa.s, on a superhydrophobic track tilted by 12.4°, with texture of wavelength 3 mm and depth 1 mm. The movie is slowed down 60x, and the camera is tilted by the same angle as the track.

Download de Maleprade et al. supplementary movie 7(Video)
Video 7.2 MB