Article contents
Free-surface jet flow of a shear-thinning power-law fluid near the channel exit
Published online by Cambridge University Press: 01 May 2014
Abstract
The jet flow of a shear-thinning power-law fluid is examined theoretically as it emerges from a channel at moderate Reynolds number. Poiseuille flow conditions are assumed to prevail far upstream from the exit. The problem is solved using the method of matched asymptotic expansions. A similarity solution is obtained in the inner layer near the free surface, with the outer layer extending to the jet centreline. An inner thin viscous sublayer is introduced to smooth out the singularity in viscosity at the free surface, allowing the inner algebraically decaying solutions to be matched smoothly with the solution near the free surface. A Newtonian jet is found to contract more than a shear-thinning jet. While both the inner-layer thickness and the free-surface height are $O(\mathit{Re}^{-1/3})$, and grow with downstream distance, the sublayer thickness is smaller, $O(\mathit{Re}^{-(1+n)/3})$, growing with distance for $n < 0.5$, and decaying for $n > 0.5$. The relaxation downstream distance for the jet is found to grow logarithmically with $\mathit{Re}$.
- Type
- Papers
- Information
- Copyright
- © 2014 Cambridge University Press
References
- 9
- Cited by