Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Eckert, E.r.g
Goldstein, R.J
Ibele, W.e
Patankar, S.V
Simon, T.W
Strykowski, P.J
Tamma, K.K
Kuehn, T.H
Bar-Cohen, A
Heberlein, J.V.R
Davidson, J.H
Bischof, J
Kulacki, F
and
Kortshagen, U
1999.
Heat transfer—a review of 1995 literature.
International Journal of Heat and Mass Transfer,
Vol. 42,
Issue. 15,
p.
2717.
Bograchev, Daniil A.
and
Davydov, Alexei D.
2002.
Theoretical study of the effect of electrochemical cell inclination on the limiting diffusion current.
Electrochimica Acta,
Vol. 47,
Issue. 20,
p.
3277.
Volgin, V. M.
and
Davydov, A. D.
2006.
Natural-convective instability of electrochemical systems: A review.
Russian Journal of Electrochemistry,
Vol. 42,
Issue. 6,
p.
567.
Borg, K. I.
Birgersson, K. E.
and
Bark, F. H.
2007.
Effects of non-linear kinetics on free convection in an electrochemical cell with a porous separator.
Journal of Applied Electrochemistry,
Vol. 37,
Issue. 11,
p.
1287.
Yang, Xuegeng
Eckert, Kerstin
Mühlenhoff, Sascha
and
Odenbach, Stefan
2009.
On the decay of the Lorentz-force-driven convection in vertical concentration stratification during magnetoelectrolysis.
Electrochimica Acta,
Vol. 54,
Issue. 27,
p.
7056.
Kawai, S.
Fukunaka, Y.
and
Kida, S.
2009.
Numerical Simulation of Ionic Mass-Transfer Rates with Natural Convection in CuSO[sub 4]–H[sub 2]SO[sub 4] Solution.
Journal of The Electrochemical Society,
Vol. 156,
Issue. 9,
p.
F109.
Kawai, S.
Fukunaka, Y.
and
Kida, S.
2009.
Numerical Simulation of Ionic Mass-Transfer Rates with Natural Convection in CuSO[sub 4]–H[sub 2]SO[sub 4] Solution.
Journal of The Electrochemical Society,
Vol. 156,
Issue. 9,
p.
F99.
Mutschke, G.
Hess, A.
Bund, A.
and
Fröhlich, J.
2010.
On the origin of horizontal counter-rotating electrolyte flow during copper magnetoelectrolysis.
Electrochimica Acta,
Vol. 55,
Issue. 5,
p.
1543.
Doche, O.
Bauer, F.
and
Tardu, S.
2012.
Direct Numerical Simulation of an electrolyte deposition under a turbulent flow – A first approach.
Journal of Electroanalytical Chemistry,
Vol. 664,
Issue. ,
p.
1.
Mühlenhoff, Sascha
Mutschke, Gerd
Koschichow, Denis
Yang, Xuegeng
Bund, Andreas
Fröhlich, Jochen
Odenbach, Stefan
and
Eckert, Kerstin
2012.
Lorentz-force-driven convection during copper magnetoelectrolysis in the presence of a supporting buoyancy force.
Electrochimica Acta,
Vol. 69,
Issue. ,
p.
209.
Somasundaram, Karthik
Birgersson, Erik
and
Mujumdar, Arun Sadashiv
2012.
Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery.
Journal of Power Sources,
Vol. 203,
Issue. ,
p.
84.
Zhou, Xiao Lan
Liu, Cai Xi
and
Dong, Yu Hong
2012.
Turbulent Mass Transfer Simulations of Binary Electrolyte in Parallel-Plate Electrode Channel.
Advanced Materials Research,
Vol. 550-553,
Issue. ,
p.
2014.
Doche, O.
Bauer, F.
and
Tardu, S.
2013.
Direct numerical simulations of electrochemical reactions in turbulent flow.
Electrochimica Acta,
Vol. 88,
Issue. ,
p.
365.
Mühlenhoff, S.
Mutschke, G.
Uhlemann, M.
Yang, X.
Odenbach, S.
Fröhlich, J.
and
Eckert, K.
2013.
On the homogenization of the thickness of Cu deposits by means of MHD convection within small dimension cells.
Electrochemistry Communications,
Vol. 36,
Issue. ,
p.
80.
Zhang, Zongliang
Werner, Joshua
and
Free, Michael
2018.
Materials Processing Fundamentals 2018.
p.
111.
Werner, J. M.
Zeng, W.
Free, M. L.
Zhang, Z.
and
Cho, J.
2018.
Editors' Choice—Modeling and Validation of Local Electrowinning Electrode Current Density Using Two Phase Flow and Nernst–Planck Equations.
Journal of The Electrochemical Society,
Vol. 165,
Issue. 5,
p.
E190.
Schwarz, M. Philip
and
Leahy, Martin J.
2024.
Treatise on Process Metallurgy.
p.
755.