Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T11:44:54.543Z Has data issue: false hasContentIssue false

A fractional PDE model for turbulent velocity fields near solid walls

Published online by Cambridge University Press:  12 April 2021

Brendan Keith*
Affiliation:
Chair for Numerical Mathematics, Technical University of Munich, Garching85748, Germany
Ustim Khristenko
Affiliation:
Chair for Numerical Mathematics, Technical University of Munich, Garching85748, Germany
Barbara Wohlmuth
Affiliation:
Chair for Numerical Mathematics, Technical University of Munich, Garching85748, Germany
*
Email address for correspondence: [email protected]

Abstract

This paper presents a class of turbulence models written in terms of fractional partial differential equations (FPDEs) with stochastic loads. Every solution of these FPDE models is an incompressible velocity field and the distribution of solutions is Gaussian. Interaction of the turbulence with solid walls is incorporated through the enforcement of various boundary conditions. The various boundary conditions deliver extensive flexibility in the near-wall statistics that can be modelled. Reproduction of both fully developed shear-free and uniform shear boundary layer turbulence are highlighted as two simple physical applications; the first of which is also directly validated with experimental data. The rendering of inhomogeneous synthetic turbulence inlet boundary conditions is an additional application, motivated by contemporary numerical wind tunnel simulations. Calibration of model parameters and efficient numerical methods are also conferred upon.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I.A. 1948 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government Printing Office.Google Scholar
Akhavan-Safaei, A., Samiee, M. & Zayernouri, M. 2020 Data-driven fractional subgrid-scale modelling for scalar turbulence: a nonlocal LES approach. arXiv:2012.14027.Google Scholar
Andre, M., Mier-Torrecilla, M. & Wüchner, R. 2015 Numerical simulation of wind loads on a parabolic trough solar collector using lattice Boltzmann and finite element methods. J. Wind Engng Ind. Aerodyn. 146, 185194.CrossRefGoogle Scholar
Aronson, D., Johansson, A.V. & Löfdahl, L. 1997 Shear-free turbulence near a wall. J. Fluid Mech. 338, 363385.CrossRefGoogle Scholar
Balakrishnan, A.V., et al. 1960 Fractional powers of closed operators and the semigroups generated by them. Pac. J. Maths 10 (2), 419437.CrossRefGoogle Scholar
Banjai, L., Melenk, J.M., Nochetto, R.H., Otarola, E., Salgado, A.J. & Schwab, C. 2019 Tensor FEM for spectral fractional diffusion. Found. Comput. Maths 19 (4), 901962.CrossRefGoogle Scholar
Banjai, L., Melenk, J.M. & Schwab, C. 2020 Exponential convergence of $hp$ FEM for spectral fractional diffusion in polygons. arXiv:2011.05701.Google Scholar
Barenblatt, G.I. & Chorin, A.J. 2004 A mathematical model for the scaling of turbulence. Proc. Natl Acad. Sci. USA 101 (42), 1502315026.CrossRefGoogle ScholarPubMed
Basu, S., Foufoula-Georgiou, E. & Porté-Agel, F. 2004 Synthetic turbulence, fractal interpolation, and large-eddy simulation. Phys. Rev. E 70 (2), 026310.CrossRefGoogle ScholarPubMed
Bateman, H. 1953 Higher Transcendental Functions [Volumes I–III], vols. I–III. McGraw-Hill Book Company.Google Scholar
Bolin, D. & Kirchner, K. 2019 The rational SPDE approach for Gaussian random fields with general smoothness. J. Comput. Graph. Stat. 29 (2), 112.Google Scholar
Bolin, D., Kirchner, K. & Kovács, M. 2020 Numerical solution of fractional elliptic stochastic PDEs with spatial white noise. IMA J. Numer. Anal. 40 (2), 10511073.CrossRefGoogle Scholar
Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E. & Salgado, A.J. 2018 Numerical methods for fractional diffusion. Comput. Vis. Sci. 19 (5–6), 1946.CrossRefGoogle Scholar
Bonito, A., Lei, W. & Pasciak, J.E. 2019 On sinc quadrature approximations of fractional powers of regularly accretive operators. J. Numer. Maths 27 (2), 5768.CrossRefGoogle Scholar
Bonito, A. & Pasciak, J. 2015 Numerical approximation of fractional powers of elliptic operators. Maths Comput. 84 (295), 20832110.CrossRefGoogle Scholar
Caffarelli, L. & Silvestre, L. 2007 An extension problem related to the fractional Laplacian. Commun. Part. Diff. Equ. 32 (8), 12451260.CrossRefGoogle Scholar
Cao, N., Chen, S. & Doolen, G.D. 1999 Statistics and structures of pressure in isotropic turbulence. Phys. Fluids 11 (8), 22352250.CrossRefGoogle Scholar
Chen, W. 2006 A speculative study of 2/3-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. Chaos 16 (2), 023126.CrossRefGoogle Scholar
Chougule, A., Mann, J., Kelly, M. & Larsen, G.C. 2018 Simplification and validation of a spectral-tensor model for turbulence including atmospheric stability. Boundary-Layer Meteorol. 167 (3), 371397.CrossRefGoogle Scholar
Croci, M., Giles, M.B., Rognes, M.E. & Farrell, P.E. 2018 Efficient white noise sampling and coupling for multilevel Monte Carlo with nonnested meshes. SIAM/ASA J. Uncertainty Quant. 6 (4), 16301655.CrossRefGoogle Scholar
Dadvand, P., Rossi, R. & Oñate, E. 2010 An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch. Comput. Methods Engng 17 (3), 253297.CrossRefGoogle Scholar
Daon, Y. & Stadler, G. 2016 Mitigating the influence of the boundary on PDE-based covariance operators. arXiv:1610.05280.Google Scholar
Di Leoni, P.C., Zaki, T.A., Karniadakis, G. & Meneveau, C. 2021 Two-point stress- strain rate correlation structure and non-local eddy viscosity in turbulent flows. J. Fluid Mech. 914, A6.Google Scholar
de Dormale, B.M. & Gautrin, H.-F. 1975 Spectral representation and decomposition of self-adjoint operators. J. Math. Phys. 16 (11), 23282332.CrossRefGoogle Scholar
Du, Q. & Zhang, T. 2002 Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. SIAM J. Numer. Anal. 40 (4), 14211445.CrossRefGoogle Scholar
Egolf, P.W. & Hutter, K. 2019 Nonlinear, Nonlocal and Fractional Turbulence: Alternative Recipes for the Modeling of Turbulence. Springer Nature.Google Scholar
George, W.K. & Castillo, L. 1997 Zero-pressure-gradient turbulent boundary layer. Appl. Mech. Rev. 50 (12), 689729.CrossRefGoogle Scholar
Girault, V. & Raviart, P.-A. 1986 Finite element methods for Navier–Stokes equations. Springer Series in Computational Mathematics, vol. 5. Springer.CrossRefGoogle Scholar
Harizanov, S. & Margenov, S. 2018 Positive Approximations of the Inverse of Fractional Powers of SPD M-matrices, pp. 147163. Springer.Google Scholar
Herrmann, R. 2014 Fractional Calculus: An Introduction for Physicists. World Scientific.CrossRefGoogle Scholar
Hida, T., Kuo, H.-H., Potthoff, J. & Streit, L. 2013 White Noise: An Infinite Dimensional Calculus, vol. 253. Springer Science & Business Media.Google Scholar
Hinze, J. 1959 Turbulence: An Introduction to Its Mechanism and Theory. McGraw-Hill.Google Scholar
Hunt, J.C.R. 1973 A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61 (4), 625706.CrossRefGoogle Scholar
Hunt, J.C.R. 1984 Turbulence structure in thermal convection and shear-free boundary layers. J. Fluid Mech. 138, 161184.CrossRefGoogle Scholar
Hunt, J.C.R. & Carruthers, D.J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212 (2), 497532.CrossRefGoogle Scholar
Hunt, J.C.R. & Graham, J.M.R. 1978 Free-stream turbulence near plane boundaries. J. Fluid Mech. 84 (2), 209235.CrossRefGoogle Scholar
Hunt, J.C.R., Moin, P., Lee, M., Moser, R.D., Spalart, P., Mansour, N.N., Kaimal, J.C. & Gaynor, E. 1989 Cross correlation and length scales in turbulent flows near surfaces. In Advances in Turbulence 2 (ed. H.H. Fernholz & H.E. Fiedler), pp. 128–134. Springer.CrossRefGoogle Scholar
IEC 61400-1:2005 Wind turbines–Part 1: Design Requirements. International Electrotechnical Commission.Google Scholar
Ilic, M., Liu, F., Turner, I. & Anh, V. 2005 Numerical approximation of a fractional-in-space diffusion equation, I. Fract. Calc. Appl. Anal. 8 (3), 323341.Google Scholar
Kaimal, J.C., Wyngaard, J.C., Haugen, D.A., Coté, O.R., Izumi, Y, Caughey, S.J. & Readings, C.J. 1976 Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33 (11), 21522169.2.0.CO;2>CrossRefGoogle Scholar
Kareem, A. & Tamura, Y. 2013 Advanced Structural Wind Engineering. Springer.Google Scholar
Kessy, A., Lewin, A. & Strimmer, K. 2018 Optimal whitening and decorrelation. Am. Stat. 72 (4), 309314.CrossRefGoogle Scholar
Khristenko, U., Scarabosio, L., Swierczynski, P., Ullmann, E. & Wohlmuth, B. 2019 Analysis of boundary effects on PDE-based sampling of Whittle–Matérn random fields. SIAM-ASA J. Uncertainty Quant. 7 (3), 948974.CrossRefGoogle Scholar
Kowalski, E. 2009 Spectral Theory in Hilbert Spaces. ETH Zürich.Google Scholar
Kristensen, L., Lenschow, D.H., Kirkegaard, P. & Courtney, M. 1989 The spectral velocity tensor for homogeneous boundary-layer turbulence. In Boundary Layer Studies and Applications (ed. R.E. Munn), pp. 149–193. Springer.CrossRefGoogle Scholar
Kuo, H.-H. 2018 White Noise Distribution Theory. CRC Press.CrossRefGoogle Scholar
Lazarov, R. & Vabishchevich, P. 2017 A numerical study of the homogeneous elliptic equation with fractional boundary conditions. Fract. Calc. Appl. Anal. 20 (2), 337351.CrossRefGoogle Scholar
Lee, M.J. & Hunt, J.C.R. 1991 The structure of sheared turbulence near a plane boundary. In Turbulent Shear Flows 7 (ed. F. Durst, B.E. Launder, W. C. Reynolds, F.W. Schmidt & J.H. Whitelaw), vol. 303, pp. 101–118. Springer.CrossRefGoogle Scholar
Lindgren, F., Rue, H. & Lindström, J. 2011 An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. 73 (4), 423498.CrossRefGoogle Scholar
Lischke, A., et al. 2020 What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009.CrossRefGoogle Scholar
Liu, Y., Li, J., Sun, S. & Yu, B. 2019 Advances in Gaussian random field generation: a review. Comput. Geosci. 23 (5), 10111047.CrossRefGoogle Scholar
Lord, G.J., Powell, C.E. & Shardlow, T. 2014 An Introduction to Computational Stochastic PDEs, vol. 50. Cambridge University Press.CrossRefGoogle Scholar
Mann, J. 1994 The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141168.CrossRefGoogle Scholar
Mann, J. 1998 Wind field simulation. Probab. Engng Mech. 13 (4), 269282.CrossRefGoogle Scholar
Matérn, B. 1986 Spatial variation. Lecture Notes in Statistics, vol. 36. Springer.CrossRefGoogle Scholar
Maxey, M.R. 1982 Distortion of turbulence in flows with parallel streamlines. J. Fluid Mech. 124, 261282.CrossRefGoogle Scholar
Mehta, P.P., Pang, G., Song, F. & Karniadakis, G.E. 2019 Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network. Fract. Calc. Appl. Anal. 22 (6), 16751688.CrossRefGoogle Scholar
Meidner, D., Pfefferer, J., Schuürholz, K. & Vexler, B. 2018 hp-finite elements for fractional diffusion. SIAM J. Numer. Anal. 56 (4), 23452374.CrossRefGoogle Scholar
Mendis, P., Ngo, T., Haritos, N., Hira, A., Samali, B. & Cheung, J. 2007 Wind loading on tall buildings. Electron. J. Struct. Engng. 7, 4154.Google Scholar
Michalski, A., Kermel, P.D., Haug, E., Löhner, R., Wüchner, R. & Bletzinger, K.U. 2011 Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow. J. Wind Engng Ind. Aerodyn. 99 (4), 400413.CrossRefGoogle Scholar
Nakatsukasa, Y., Sète, O. & Trefethen, L.N. 2018 The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40 (3), A1494A1522.CrossRefGoogle Scholar
National Research Council 2012 Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification. National Academies Press.Google Scholar
Nieuwstadt, F.T.M., Westerweel, J. & Boersma, B.J. 2016 Turbulence: Introduction to Theory and Applications of Turbulent Flows. Springer.CrossRefGoogle Scholar
Nochetto, R.H., Otárola, E. & Salgado, A.J. 2015 A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Maths 15 (3), 733791.CrossRefGoogle Scholar
Perot, B. & Moin, P. 1995 a Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence. J. Fluid Mech. 295, 199227.CrossRefGoogle Scholar
Perot, B. & Moin, P. 1995 b Shear-free turbulent boundary layers. Part 2. New concepts for Reynolds stress transport equation modelling of inhomogeneous flows. J. Fluid Mech. 295, 229245.CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent Flows. IOP Publishing.Google Scholar
Priestley, C.H.B. 1959 Turbulent Transfer in the Lower Atmosphere. University of Chicago Press.Google Scholar
Reed, M. 2012 Methods of Modern Mathematical Physics: Functional Analysis. Elsevier.Google Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Roininen, L., Huttunen, J.M.J. & Lasanen, S. 2014 Whittle–Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Probl. Imaging 8 (2), 561586.CrossRefGoogle Scholar
Saad, Y. 2003 Iterative Methods for Sparse Linear Systems. SIAM.CrossRefGoogle Scholar
She, Z.-S., Jackson, E. & Orszag, S.A. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344 (6263), 226228.CrossRefGoogle Scholar
Song, F. & Karniadakis, G.E. 2018 A universal fractional model of wall-turbulence. arXiv:1808.10276.Google Scholar
Stein, E.M. & Weiss, G. 1971 Introduction to Fourier Analysis on Euclidean Spaces, vol. 1. Princeton University Press.Google Scholar
Stein, M.L. 1999 Interpolation of spatial data. Springer Series in Statistics, vol. 44. Springer.CrossRefGoogle Scholar
Stuart, A.M. 2010 Inverse problems: a Bayesian perspective. Acta Numer. 19, 451.CrossRefGoogle Scholar
Tabor, G.R. & Baba-Ahmadi, M.H. 2010 Inlet conditions for large eddy simulation: a review. Comput. Fluids 39 (4), 553567.CrossRefGoogle Scholar
Thomas, N.H. & Hancock, P.E. 1977 Grid turbulence near a moving wall. J. Fluid Mech. 82 (3), 481496.CrossRefGoogle Scholar
Townsend, A.A.R. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vabishchevich, P.N. 2015 Numerically solving an equation for fractional powers of elliptic operators. J. Comput. Phys. 282, 289302.CrossRefGoogle Scholar
Von Kármán, T. 1948 Progress in the statistical theory of turbulence. Proc. Natl Acad. Sci. USA 34 (11), 530.CrossRefGoogle ScholarPubMed
Watson, G.N. 1995 A Treatise on the Theory of Bessel Functions. Cambridge University Press.Google Scholar
Weidmann, J. 2012 Linear Operators in Hilbert Spaces, vol. 68. Springer Science & Business Media.Google Scholar
Yang, Q., Turner, I., Liu, F. & Ilić, M. 2011 Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33 (3), 11591180.CrossRefGoogle Scholar