Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T03:14:15.276Z Has data issue: false hasContentIssue false

Forced dewetting in a capillary tube

Published online by Cambridge University Press:  16 November 2018

Peng Gao*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, China
Ao Liu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
James J. Feng
Affiliation:
Departments of Chemical and Biological Engineering and Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
Hang Ding
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
Xi-Yun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
*
Email address for correspondence: [email protected]

Abstract

Liquid films can be entrained when the dewetting velocity attains a threshold, and this dynamical wetting transition has been well studied in the situation of plane substrates. We investigate the forced dewetting in a capillary tube using diffuse-interface simulations and lubrication analysis, focusing on the onset of wetting transition and subsequent interface evolution. Results show that the meniscus remains stable when the displacing rate is below a threshold, beyond which film entrainment occurs and eventually leads to the formation of Taylor bubbles separated by liquid slugs, as has also been observed in the recent experiments of Zhao et al. (Phys. Rev. Lett., vol. 120, 2018, 084501). We derive an analytical solution of the critical capillary number, and demonstrate that the wetting transition is accompanied by a vanishing apparent contact angle and an abrupt drop of the contact-line velocity. Both the bubble and slug lengths are found to depend on the capillary number and the wettability of the wall. A theoretical formula for the bubble length is also proposed and compares favourably with numerical and experimental results.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aussillous, P. & Quéré, D. 2000 Quick deposition of a fluid on the wall of a tube. Phys. Fluids 12, 23672371.Google Scholar
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299, 113.Google Scholar
Blake, T. D. & De Coninck, J. 2011 Dynamics of wetting and Kramers’ theory. Eur. Phys. J. Spec. Top. 197, 249264.Google Scholar
Blake, T. D. & Haynes, J. M. 1969 Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421423.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.Google Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.Google Scholar
Callegari, G., Calvo, A. & Hulin, J. P. 2005 Dewetting processes in a cylindrical geometry. Eur. Phys. J. E 16, 283290.Google Scholar
Chan, T. S., Gueudre, T. & Snoeijer, J. H. 2011 Maximum speed of dewetting on a fiber. Phys. Fluids 23 (11), 112103.Google Scholar
Chan, T. S., Snoeijer, J. H. & Eggers, J. 2012 Theory of the forced wetting transition. Phys. Fluids 24, 072104.Google Scholar
Chan, T. S., Srivastava, S., Marchand, A., Andreotti, B., Biferale, L., Toschi, F. & Snoeijer, J. H. 2013 Hydrodynamics of air entrainment by moving contact lines. Phys. Fluids 25, 074105.Google Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid-surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.Google Scholar
Delon, G., Fermigier, M., Snoeijer, J. H. & Andreotti, B. 2008 Relaxation of a dewetting contact line. Part 2. Experiments. J. Fluid Mech. 604, 5575.Google Scholar
Duffy, B. R. & Wilson, S. K. 1997 A third-order differential equation arising in thin-film flows and relevant to Tanner’s law. Appl. Math. Lett. 10, 6368.Google Scholar
Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.Google Scholar
Eggers, J. 2005 Existence of receding and advancing contact lines. Phys. Fluids 17, 082106.Google Scholar
Fermigier, M. & Jenffer, P. 1991 An experimental investigation of the dynamic contact angle in liquid–liquid systems. J. Colloid Interface Sci. 146, 226241.Google Scholar
Galvagno, M., Tseluiko, D., Lopez, H. & Thiele, U. 2014 Continuous and discontinuous dynamic unbinding transitions in drawn film flow. Phys. Rev. Lett. 112, 137803.Google Scholar
Gao, P., Li, L., Feng, J. J., Ding, H. & Lu, X.-Y. 2016 Film deposition and transition on a partially wetting plate in dip coating. J. Fluid Mech. 791, 358383.Google Scholar
de Gennes, P. G. 1986 Deposition of Langmuir–Blodgett layers. Colloid Polym. Sci. 264, 463465.Google Scholar
Hoffman, R. L. 1975 Study of advancing interface. 1. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50, 228241.Google Scholar
Hoffman, R. L. 1983 A study of the advancing interface. 2. Theoretical prediction of the dynamic contact-angle in liquid gas systems. J. Colloid Interface Sci. 94, 470486.Google Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.Google Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.Google Scholar
Jacqmin, D. 2004 Onset of wetting failure in liquid–liquid systems. J. Fluid Mech. 517, 209228.Google Scholar
Klaseboer, E., Gupta, R. & Manica, R. 2014 An extended Bretherton model for long Taylor bubbles at moderate capillary numbers. Phys. Fluids 26, 032107.Google Scholar
Landau, L. D. & Levich, B. V. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 4254.Google Scholar
Maleki, M., Reyssat, E., Quéré, D. & Golestanian, R. 2007 On the Landau–Levich transition. Langmuir 23, 1011610122.Google Scholar
Marchand, A., Chan, T. S., Snoeijer, J. H. & Andreotti, B. 2012 Air entrainment by contact lines of a solid plate plunged into a viscous fluid. Phys. Rev. Lett. 108, 204501.Google Scholar
Qian, T., Wang, X.-P. & Sheng, P. 2006 A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333360.Google Scholar
Qin, J. & Gao, P. 2018 Asymptotic theory of fluid entrainment in dip coating. J. Fluid Mech. 844, 10261037.Google Scholar
Quéré, D. 1991 On the minimal velocity of forced spreading in partial wetting. C. R. Acad. Sci. Ser. II 313, 313318.Google Scholar
Redon, C., Brochard-Wyart, F. & Rondelez, F. 1991 Dynamics of dewetting. Phys. Rev. Lett. 66, 715718.Google Scholar
Rolley, E. & Guthmann, C. 2007 Dynamics and hysteresis of the contact line between liquid hydrogen and cesium substrates. Phys. Rev. Lett. 98, 166105.Google Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.Google Scholar
Seveno, D., Vaillant, A., Rioboo, R., Adão, H., Conti, J. & De Coninck, J. 2009 Dynamics of wetting revisited. Langmuir 25, 1303413044.Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Snoeijer, J. H., Andreotti, B., Delon, G. & Fermigier, M. 2007 Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation. J. Fluid Mech. 579, 6383.Google Scholar
Snoeijer, J. H., Delon, G., Fermigier, M. & Andreotti, B. 2006 Avoided critical behavior in dynamically forced wetting. Phys. Rev. Lett. 96, 174504.Google Scholar
Snoeijer, J. H. & Eggers, J. 2010 Asymptotic analysis of the dewetting rim. Phys. Rev. E 82, 056314.Google Scholar
Sprittles, J. E. 2015 Air entrainment in dynamic wetting: Knudsen effects and the influence of ambient air pressure. J. Fluid Mech. 769, 444481.Google Scholar
Taylor, G. I. 1961 Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161165.Google Scholar
Thiele, U. 2014 Patterned deposition at moving contact lines. Adv. Colloid Interface Sci. 206, 399413.Google Scholar
Tseluiko, D., Galvagno, M. & Thiele, U. 2014 Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems. Eur. Phys. J. E 37, 33.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2013 On the mechanism of wetting failure during fluid displacement along a moving substrate. Phys. Fluids 25, 102103.Google Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2014 Characteristics of air entrainment during dynamic wetting failure along a planar substrate. J. Fluid Mech. 747, 119140.Google Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.Google Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.Google Scholar
Wilczek, M., Zhu, J., Chi, L. F., Thiele, U. & Gurevich, S. V. 2017 Dip-coating with prestructured substrates: transfer of simple liquids and Langmuir–Blodgett monolayers. J. Phys. Condens. Matter 29, 014002.Google Scholar
Wilson, S. D. R. 1982 The drag-out problem in film coating theory. J. Engng Maths 16, 209221.Google Scholar
Yue, P. T., Zhou, C. F. & Feng, J. J. 2010 Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279294.Google Scholar
Yue, P. T., Zhou, C. F., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2006 Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219, 4767.Google Scholar
Zhao, B., Pahlavan, A. A., Cueto-Felgueroso, L. & Juanes, R. 2018 Forced wetting transition and bubble pinch-off in a capillary tube. Phys. Rev. Lett. 120, 084501.Google Scholar
Zhou, C. F., Yue, P. T., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2010 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229, 498511.Google Scholar
Ziegler, J., Snoeijer, J. H. & Eggers, J. 2009 Film transitions of receding contact lines. Eur. Phys. J. Spec. Top. 166, 177180.Google Scholar