Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:49:36.184Z Has data issue: false hasContentIssue false

Fluid-inertia torque on spheroids in pseudo-plastic fluid flows: effect of shear-thinning rheology

Published online by Cambridge University Press:  30 August 2023

Yansong Li
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Chunxiao Xu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Lihao Zhao*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email address for correspondence: [email protected]

Abstract

Fluid-inertia torque remarkably affects the orientation of non-spherical particles in Newtonian flows whereas this torque induced by convective fluid inertia in particle-laden pseudo-plastic flows is still unknown. In the present study we numerically investigate the fluid-inertia torque on a neutrally buoyant spheroid in the Carreau-type pseudo-plastic fluid flows at finite Reynolds numbers with the immersed boundary method. The results show that compared with the fluid-inertia torque in Newtonian flows, the magnitude of the fluid-inertia torque on spheroids is remarkably attenuated by the shear-thinning rheology in pseudo-plastic fluid flows. The deviation of fluid-inertia torque between pseudo-plastic and Newtonian flows is more significant with decreasing Reynolds numbers, indicating the importance of the effect of shear-thinning rheology at small Reynolds numbers. Moreover, the spheroid rotation rate is reduced in pseudo-plastic fluids, and the equilibrium orientation of oblate spheroids changes non-monotonically with the shear-thinning effect in the linear shear flow of pseudo-plastic fluids. The present findings imply the importance of the effect of shear-thinning rheology on the torques of spheroids, which could be potentially applied for the control of particle orientations in pseudo-plastic fluids in the future.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abtahi, S.A. & Elfring, G.J. 2019 Jeffery orbits in shear-thinning fluids. Phys. Fluids 31 (10), 103106.CrossRefGoogle Scholar
Alghalibi, D., Fornari, W., Rosti, M.E. & Brandt, L. 2020 Sedimentation of finite-size particles in quiescent wall-bounded shear-thinning and Newtonian fluids. Intl J. Multiphase Flow 129, 103291.CrossRefGoogle Scholar
Altan, M.C. 1990 A review of fiber-reinforced injection molding: flow kinematics and particle orientation. J. Thermoplast. Compos. 3 (4), 275313.CrossRefGoogle Scholar
Bailoor, S., Seo, J.-H. & Mittal, R. 2019 Vortex shedding from a circular cylinder in shear-thinning Carreau fluids. Phys. Fluids 31 (1), 011703.CrossRefGoogle Scholar
Bertevas, E., Férec, J., Khoo, B.C., Ausias, G. & Phan-Thien, N. 2018 Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process. Phys. Fluids 30 (10), 103103.CrossRefGoogle Scholar
Bertevas, E., Parc, L., Phan-Thien, N., Férec, J. & Ausias, G. 2019 A smoothed particle hydrodynamics simulation of fiber-filled composites in a non-isothermal three-dimensional printing process. Phys. Fluids 31 (12), 123102.Google Scholar
Boufi, S., González, I., Delgado-Aguilar, M., Tarrès, Q. & Mutjé, P. 2017 Nanofibrillated cellulose as an additive in papermaking process. In Cellulose-Reinforced Nanofibre Composites (ed. M. Jawaid, S. Boufi & H.P.S.A. Khalil), pp. 153–173. Elsevier.CrossRefGoogle Scholar
Chaparian, E., Ardekani, M.N., Brandt, L. & Tammisola, O. 2020 Particle migration in channel flow of an elastoviscoplastic fluid. J. Non-Newtonian Fluid Mech. 284, 104376.CrossRefGoogle Scholar
Cox, R.G. 1965 The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23 (4), 625643.CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.CrossRefGoogle Scholar
Datt, C., Zhu, L., Elfring, G.J. & Pak, O.S. 2015 Squirming through shear-thinning fluids. J. Fluid Mech. 784, R1.CrossRefGoogle Scholar
Daunais, C.-A., Barbeau, L. & Blais, B. 2023 An extensive study of shear thinning flow around a spherical particle for power-law and Carreau fluids. J. Non-Newtonian Fluid Mech. 311, 104951.CrossRefGoogle Scholar
D'Avino, G., Hulsen, M.A., Greco, F. & Maffettone, P.L. 2014 Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid. Phys. Rev. E 89 (4), 043006.CrossRefGoogle Scholar
Domurath, J., Ausias, G., Férec, J., Heinrich, G. & Saphiannikova, M. 2019 A model for the stress tensor in dilute suspensions of rigid spheroids in a generalized Newtonian fluid. J. Non-Newtonian Fluid Mech. 264, 7384.CrossRefGoogle Scholar
Elfring, G.J. 2017 Force moments of an active particle in a complex fluid. J. Fluid Mech. 829, R3.CrossRefGoogle Scholar
Fedosov, D.A., Pan, W., Caswell, B., Gompper, G. & Karniadakis, G.E. 2011 Predicting human blood viscosity in silico. Proc. Natl Acad. Sci. USA 108 (29), 1177211777.CrossRefGoogle ScholarPubMed
Fröhlich, K., Meinke, M. & Schröder, W. 2020 Correlations for inclined prolates based on highly resolved simulations. J. Fluid Mech. 901, A5.CrossRefGoogle Scholar
van Gogh, B., Demir, E., Palaniappan, D. & Pak, O.S. 2022 The effect of particle geometry on squirming through a shear-thinning fluid. J. Fluid Mech. 938, A3.CrossRefGoogle Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd edn, pp. 143148. Addison-Wesley.Google Scholar
Gustavsson, K., Sheikh, M.Z., Lopez, D., Naso, A., Pumir, A. & Mehlig, B. 2019 Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New J. Phys. 21 (8), 083008.CrossRefGoogle Scholar
Gustavsson, K., Sheikh, M.Z., Naso, A., Pumir, A. & Mehlig, B. 2021 Effect of particle inertia on the alignment of small ice crystals in turbulent clouds. J. Atmos. Sci. 78, 25732587.Google Scholar
Håkansson, K.M.O., et al. 2014 Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5 (1), 4018.CrossRefGoogle ScholarPubMed
Huang, W.-X., Chang, C.B. & Sung, H.J. 2011 An improved penalty immersed boundary method for fluid-flexible body interaction. J. Comput. Phys. 230 (12), 50615079.CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jiang, F., Zhao, L., Andersson, H.I., Gustavsson, K., Pumir, A. & Mehlig, B. 2021 Inertial torque on a small spheroid in a stationary uniform flow. Phys. Rev. Fluids 6 (2), 024302.CrossRefGoogle Scholar
Khayat, R.E. & Cox, R.G. 1989 Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435462.CrossRefGoogle Scholar
Kim, K., Baek, S.-J. & Sung, H.J. 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38 (2), 125138.CrossRefGoogle Scholar
Lashgari, I., Pralits, J.O., Giannetti, F. & Brandt, L. 2012 First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder. J. Fluid Mech. 701, 201227.CrossRefGoogle Scholar
Li, Y., Huang, W., Xu, C. & Zhao, L. 2022 An implicit conformation tensor decoupling approach for viscoelastic flow simulation within the monolithic projection framework. J. Comput. Phys. 468, 111497.CrossRefGoogle Scholar
Li, Y., Xu, C. & Zhao, L. 2023 Rotational dynamics of a neutrally buoyant prolate spheroid in viscoelastic shear flows at finite Reynolds numbers. J. Fluid Mech. 958, A20.CrossRefGoogle Scholar
Lim, E.J., Ober, T.J., Edd, J.F., Desai, S.P., Neal, D., Bong, K.W., Doyle, P.S., McKinley, G.H. & Toner, M. 2014 Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun. 5 (1), 4120.CrossRefGoogle ScholarPubMed
Lundell, F., Söderberg, L.D. & Alfredsson, P.H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43 (1), 195217.CrossRefGoogle Scholar
Merrill, E.W. 1969 Rheology of blood. Physiol. Rev. 49 (4), 863888.CrossRefGoogle Scholar
Mezi, D., Ausias, G., Advani, S.G. & Férec, J. 2019 Fiber suspension in 2D nonhomogeneous flow: the effects of flow/fiber coupling for newtonian and power-law suspending fluids. J. Rheol. 63 (3), 405418.CrossRefGoogle Scholar
Nabergoj, M., Urevc, J. & Halilovič, M. 2022 Function-based reconstruction of the fiber orientation distribution function of short-fiber-reinforced polymers. J. Rheol. 66 (1), 147160.CrossRefGoogle Scholar
Ngo, T.T., Nguyen, H.M.K. & Oh, D.-W. 2021 Prediction of fiber rotation in an orifice channel during injection molding process. J. Rheol. 65 (6), 13611371.CrossRefGoogle Scholar
Ouchene, R., Khalij, M., Arcen, B. & Tanière, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 3343.CrossRefGoogle Scholar
Pan, X., Kim, K.-H. & Choi, J.-I. 2019 Efficient monolithic projection method with staggered time discretization for natural convection problems. Intl J. Heat Mass Transfer 144, 118677.CrossRefGoogle Scholar
Qiu, J., Cui, Z., Climent, E. & Zhao, L. 2022 Gyrotactic mechanism induced by fluid inertial torque for settling elongated microswimmers. Phys. Rev. Res. 4 (2), 023094.CrossRefGoogle Scholar
Romanus, R.S., Lugarini, A. & Franco, A.T. 2022 Fully-resolved simulations of an ellipsoidal particle settling in a Bingham fluid. J. Non-Newtonian Fluid Mech. 301, 104745.CrossRefGoogle Scholar
Sanjeevi, S.K.P., Kuipers, J.A.M. & Padding, J.T. 2018 Drag, lift and torque correlations for non-spherical particles from stokes limit to high Reynolds numbers. Intl J. Multiphase Flow 106, 325337.CrossRefGoogle Scholar
Sheikh, M.Z., Gustavsson, K., Lopez, D., Lévêque, E., Mehlig, B., Pumir, A. & Naso, A. 2020 Importance of fluid inertia for the orientation of spheroids settling in turbulent flow. J. Fluid Mech. 886, A9.CrossRefGoogle Scholar
Subramanian, G. & Koch, D.L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.CrossRefGoogle Scholar
Tseng, H.-C. 2022 Jeffery's orbit leading to the foundation of flow-induced orientation in modern fiber composite materials. J. Non-Newtonian Fluid Mech. 309, 104926.CrossRefGoogle Scholar
Zastawny, M., Mallouppas, G., Zhao, F. & van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.CrossRefGoogle Scholar