Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T21:48:00.876Z Has data issue: false hasContentIssue false

A fluid mechanical view on abdominal aortic aneurysms

Published online by Cambridge University Press:  29 November 2010

VIRGINIE DUCLAUX
Affiliation:
IRPHE, UMR 6594, 49 rue F. Joliot-Curie, 13384 Marseille, France
FRANÇOIS GALLAIRE
Affiliation:
LFMI, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
CHRISTOPHE CLANET*
Affiliation:
LadHyX, UMR 7646, Ecole Polytechnique, 91178 Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

Abdominal aortic aneurysms are a dilatation of the aorta, localized preferentially above the bifurcation of the iliac arteries, which increases in time. Understanding their localization and growth rate remain two open questions that can have either a biological or a physical origin. In order to identify the respective role of biological and physical processes, we address in this article these questions of the localization and growth using a simplified physical experiment in which water (blood) is pumped periodically (amplitude a, pulsation ω) in an elastic membrane (aorta) (length L, cross-section A0 and elastic wave speed c0) and study the deformation of this membrane while decharging in a rigid tube (iliac artery; hydraulic loss K). We first show that this pulsed flow either leads to a homogenous deformation or inhomogenous deformation depending on the value of the non-dimensional parameter c02/(aLω2K). These different regimes can be related to the aneurysm locations. In the second part, we study the growth of aneurysms and show that they only develop above a critical flow rate which scales as A0c0/.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, J. J. 2004 The pathobiology of aortic aneurysms. J. Surg. Res. 117, 163175.CrossRefGoogle ScholarPubMed
Carpenter, P. W. & Pedley, T. J. 2003 Flow in Collapsible Tubes and Past Other Highly Complaint Boundaries. Kluwer.CrossRefGoogle Scholar
Chandran, K. B. & Yearwood, T. L. 1981 Experimental study of physiological pulsatile flow in a curved tube. J. Fluid Mech. 111, 5985.CrossRefGoogle Scholar
Chater, E. & Hutchinson, J. W. 1984 a On the propagation of bulges and buckles. J. Appl. Mech. 51, 269277.CrossRefGoogle Scholar
Chater, E. & Hutchinson, J. W. 1984 b Mechanical analogs of coexistent phases. In Phase Transformations and Material Instabilities in Solids, pp. 2136. Academic Press Inc. ISBN 0-12-309770-3.Google Scholar
de Chauliac, G. 1373 La grande chirurgie (ed. Michel, C.). Imprimeur de l'Université de Montpellier.Google Scholar
Cheng, C. P., Herfkens, R. J. & Taylor, C. A. 2003 Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168, 323331.CrossRefGoogle ScholarPubMed
Frank, O. 1905 Der Puls in den Arterien. Z. Biol. 45, 441553.Google Scholar
Fung, Y. C. 1990 Biomechanics: Motion, Flow, Stress and Growth. Springer.CrossRefGoogle Scholar
Fung, Y. C. 1997 Biomechanics: Circulation. Springer.CrossRefGoogle Scholar
Gray, H. 1918 Anatomy of the Human Body. Lea and Febiger.CrossRefGoogle Scholar
Glagov, S., Rowley, D. A. & Kohut, R. 1961 Atherosclerosis of human aorta and its coronary and renal arteries. Arch. Pathol. Lab. Med. 72, 558568.Google ScholarPubMed
Groenink, M., Langevaka, S. E., Vanbavel, Ed., van der Wall, E. E., Mulder, B. J. M., van der Wal, A. C. & Spaan, J. A. E. 1999 The influence of aging and aortic stiffness on permanent dilation and breaking stress of the thoracic descending aorta. Cardiovasc. Res. 43, 471480.CrossRefGoogle ScholarPubMed
Guirguis, E. M. & Barber, G. G. 1991 The natural history of abdominal aortic aneurysms. Am. J. Surg. 162, 481483.CrossRefGoogle ScholarPubMed
Hirsch, C. 1989 Numerical Computation of Internal and External Flows. Wiley.Google Scholar
Humphrey, J. D. & Delange, S. L. 2004 An Introduction to Biomechanics (Solids and Fluids, Analysis and Design). Springer.Google Scholar
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.CrossRefGoogle Scholar
Ku, D. N., Zeigler, M. N. & Downing, J. M. 1990 One-dimensional steady inviscid flow through a stenotic collapsible tube. J. Biomech. Engng 112, 444450.CrossRefGoogle ScholarPubMed
Laennec, R. T. H. 1819 De l'auscultation Médiate ou Traité du Diagnostic des Maladies des Poumons et du Coeur, Fondé Principalement Sur ce Nouveau Moyen d'exploitation. J. A. Brosson & J. S. Chaud.Google Scholar
Lasheras, J. C. 2007 The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293319.CrossRefGoogle Scholar
Li, J. K., Malbin, J., Riffle, R. A. & Noodergraaf, A. 1981 Pulse wave propagation. Circ. Res. 49, 442452.CrossRefGoogle ScholarPubMed
Lighthill, J. 1975 Mathematical Biofluiddynamics. SIAM.CrossRefGoogle Scholar
McAuley, L. M., Fisher, A., Hill, A. B. & Joyce, J. 2002 Les Implants Endovasculaires Comparativement à la Chirurgie Sanglante Dans la Réparation de L'anévrisme de L'aorte Abdominale: Pratique au Canada et Examen Systématique. Rapport Technologique no. 33. Office canadien de coordination de l'évaluation des technologies de la santé.Google Scholar
McDonald, D. A. 1960 Blood Flow in Arteries. Edward Arnold.Google Scholar
McDonald, D. A. 1968 Regional pulse-wave velocity in the arterial tree. J. Appl. Physiol. 24, 7378.CrossRefGoogle ScholarPubMed
Medynsky, A. O., Holdsworth, D. W., Sherebrin, M. H., Rankin, R. N. & Roach, M. R. 1998 Elastic response of human iliac arteries in-vitro to balloon angioplasty using high-resolution CT1. J. Biomech. 31, 747751.CrossRefGoogle Scholar
Olsen, J. H. & Shapiro, A. H. 1967 Large amplitude unsteady flow in liquid-filled elastic tubes. J. Fluid Mech. 29, 513538.CrossRefGoogle Scholar
Païdoussis, M. P. 2006 Wave propagation in physiological collapsible tubes and a proposal for a Shapiro number. J. Fluids Struct. 22, 721725.CrossRefGoogle Scholar
Paquerot, J. F. & Lambrakos, S. G. 1994 Monovariable representation of blood flow in a large elastic artery. Phys. Rev. E 49, 34323439.Google Scholar
Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.CrossRefGoogle Scholar
Plateau, J. A. F. 1849 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Acad. Sci. Brux. Mem. 23, 5.Google Scholar
Prandtl, L. & Tietjens, O. G. 1957 Applied Hydro and Aeromechanics. Dover.Google Scholar
Rayleigh, Lord. 1879 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.Google Scholar
Reinke, W., Johnson, P. C. & Gaehtgens, P. 1986 Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Circ. Res. 59, 124132.CrossRefGoogle ScholarPubMed
Roberts, J. C., Moses, C. & Wilkins, R. H. 1847 Autopsy studies in atherosclerosis: distribution and severity of atherosclerosis in patients dying without any morphologic evidence of atherosclerotic catastrophe. Circulation 20, 511519.CrossRefGoogle Scholar
Savart, F. 1833 Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi. Ann. de Chim. 53, 337386.Google Scholar
Shapiro, A. H. 1977 Steady flow in collapsible tubes. ASME J. Biomech. Engng 99, 126147.CrossRefGoogle Scholar
Womersley, J. R. 1957 Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 2, 178187.CrossRefGoogle Scholar