Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T21:58:19.957Z Has data issue: false hasContentIssue false

Fluid dynamics and mass transfer in a gas centrifuge

Published online by Cambridge University Press:  20 April 2006

A. T. Conlisk
Affiliation:
Department of Mechanical Engineering, The Ohio State University. Columbus, OH
M. R. Foster
Affiliation:
Department of Aeronautical and Astronautical Engineering, The Ohio State University, Columbus, OH
J. D. A. Walker
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA

Abstract

The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. The model centrifuge considered consists of a pair of concentric circular cylinders bounded on the top and bottom by horizontal end plates; the apparatus rotates rapidly about the axis of the cylinders. During steady operation a binary gas mixture containing species A and B is injected into and withdrawn from the centrifuge through axisymmetric slots located on the sidewalls. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.
Barcilon, V. 1970 Phys. Fluids 13, 537544.
Bark, F. H. & Hultgren, L. S. 1979 J. Fluid Mech. 95, 97118.
Bark, F. H., Meijer, P. S. & Cohen, H. I. 1978 Phys. Fluids 21, 531539.
Bennetts, D. A. & Hocking, L. M. 1973 Proc. R. Soc. Lond. A 333, 469489.
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.
Brouwers, J. J. H. 1976 Doctoral dissertation, de Technische Hogeschool. Twente, Holland.
Conlisk, A. T. 1978 Ph.D. thesis, Purdue University.
Conlisk, A. T. & Walker, J. D. A. 1981 Q. J. Mech. Appl. Math. 34, 89109.
Hide, R. 1968 J. Fluid Mech. 32, 737764.
Homsy, G. M. & Hudson, J. L. 1969 J. Fluid Mech. 35, 3352.
Hultgren, L. S., Meijer, P. S. & Bark, F. H. 1981 J. Méc. 20, 135157.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Addison-Wesley.
Matsuda, T. 1975 J. Nucl. Sci. Tech. 12, 512518.
Matsuda, T. & Hashimoto, K. 1976 J. Fluid Mech. 78, 337354.
Matsuda, T. & Hashimoto, K. 1978 J. Fluid Mech. 85, 433442.
Matsuda, T., Hashimoto, K. & Takeda, H. 1976 J. Fluid Mech. 73, 389399.
Matsuda, T., Sakurai, T. & Takeda, H. 1975 J. Fluid Mech. 61, 197208.
Matsuda, T. & Takeda, H. 1978 J. Fluid Mech. 85, 443457.
Nakayama, W. & Torii, T. 1974 J. Nucl. Sci. Tech. 11, 495504.
Nakayama, W. & Usui, S. 1974 J. Nucl. Sci. Tech. 11, 242262.
Olander, D. R. 1972 Adv. Nucl. Sci. Tech. 6, 105174.
Rosser, J. B. 1968 Mathematics Research Center, Madison, Wisconsin, T.S.R. no. 797.
Sakurai, T. & Matsuda, T. 1974 J. Fluid Mech. 62, 727736.
Sarma, S. R. 1975 Z. angew. Math. Phys. 26, 337345.
Soubbaramayer 1979 Centrifugation. In Uranium Enrichment (ed. S. Villani). Springer.
Torii, T. 1977 J. Nucl. Sci. Tech. 14, 901910.
Walker, J. D. A. & Stewartson, K. 1972 Z. angew. Math. Phys. 23, 745752.
Wood, H. G. & Morton, J. B. 1980 J. Fluid Mech. 101, 131.