Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-25T12:55:38.593Z Has data issue: true hasContentIssue false

Fluctuation-driven dynamics of liquid nano-threads with external hydrodynamic perturbations

Published online by Cambridge University Press:  30 September 2024

Zhao Zhang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Chengxi Zhao*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Ting Si
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
*
Email address for correspondence: [email protected]

Abstract

Instability and rupture dynamics of a liquid nano-thread, subjected to external hydrodynamic perturbations, are captured by a stochastic lubrication equation (SLE) incorporating thermal fluctuations via Gaussian white noise. Linear instability analysis of the SLE is conducted to derive the spectra and distribution functions of thermal capillary waves influenced by external perturbations and thermal fluctuations. The SLE is also solved numerically using a second-order finite difference method with a correlated noise model. Both theoretical and numerical solutions, validated through molecular dynamics, indicate that surface tension forces due to specific external perturbations overcome the random effects of thermal fluctuations, determining both the thermal capillary waves and the evolution of perturbation growth. The results also show two distinct regimes: (i) the hydrodynamic regime, where external perturbations dominate, leading to uniform ruptures, and (ii) the thermal-fluctuation regime, where external perturbations are surpassed by thermal fluctuations, resulting in non-uniform ruptures. The transition between these regimes, modelled by a criterion developed from linear instability theory, exhibits a strong dependence on the amplitudes and wavenumbers of the external perturbations.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arienti, M., Pan, W., Li, X. & Karniadakis, G. 2011 Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. J. Chem. Phys. 134 (20), 204114.Google Scholar
Barker, B., Bell, J.B. & Garcia, A.L. 2023 Fluctuating hydrodynamics and the Rayleigh–Plateau instability. Proc. Natl Acad. Sci. USA 120 (30), e2306088120.Google Scholar
Castrejón-Pita, J., Castrejón-Pita, A.A., Thete, S.S., Sambath, K., Hutchings, I.M., Hinch, J., Lister, J.R. & Basaran, O.A. 2015 Plethora of transitions during breakup of liquid filaments. Proc. Natl Acad. Sci. USA 112 (15), 45824587.Google Scholar
Chen, Y.-J. & Steen, P.H. 1997 Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech. 341, 245267.Google Scholar
Choi, Y.S., Kim, S.J. & Kim, M.-U. 2006 Molecular dynamics of unstable motions and capillary instability in liquid nanojets. Phys. Rev. E 73 (1), 016309.Google Scholar
Day, R.F., Hinch, E.J. & Lister, J.R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80 (4), 704.Google Scholar
Diez, J.A., González, A.G. & Fernández, R. 2016 Metallic-thin-film instability with spatially correlated thermal noise. Phys. Rev. E 93 (1), 013120.Google Scholar
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71 (21), 3458.Google Scholar
Eggers, J. 2002 Dynamics of liquid nanojets. Phys. Rev. Lett. 89 (8), 084502.Google Scholar
Eggers, J. & Dupont, T.F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 179.Google Scholar
Fowlkes, J., Horton, S., Fuentes-Cabrera, M. & Rack, P.D. 2012 Signatures of the Rayleigh–Plateau instability revealed by imposing synthetic perturbations on nanometer-sized liquid metals on substrates. Angew. Chem. Int. Ed. 51 (35), 87688772.Google Scholar
Gopan, N. & Sathian, S.P. 2014 Rayleigh instability at small length scales. Phys. Rev. E 90 (3), 033001.Google Scholar
Green, M.S. 1954 Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22 (3), 398413.Google Scholar
Grün, G., Mecke, K. & Rauscher, M. 2006 Thin-film flow influenced by thermal noise. J. Stat. Phys. 122 (6), 12611291.Google Scholar
Hennequin, Y., Aarts, D.G.A.L., van der Wiel, J.H., Wegdam, G., Eggers, J., Lekkerkerker, H.N.W. & Bonn, D. 2006 Drop formation by thermal fluctuations at an ultralow surface tension. Phys. Rev. Lett. 97 (24), 244502.Google Scholar
Kadau, K., Rosenblatt, C., Barber, J.L., Germann, T.C., Huang, Z., Carlès, P. & Alder, B.J. 2007 The importance of fluctuations in fluid mixing. Proc. Natl Acad. Sci. USA 104 (19), 77417745.Google Scholar
Kang, W., Landman, U. & Glezer, A. 2008 Thermal bending of nanojets: molecular dynamics simulations of an asymmetrically heated nozzle. Appl. Phys. Lett. 93 (12), 123116.Google Scholar
Kaufman, J.J., Tao, G., Shabahang, S., Banaei, E.-H., Deng, D.S., Liang, X., Johnson, S.G., Fink, Y. & Abouraddy, A.F. 2012 Structured spheres generated by an in-fibre fluid instability. Nature 487 (7408), 463467.Google Scholar
Kavokine, N., Netz, R.R. & Bocquet, L. 2021 Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377410.Google Scholar
Kirkwood, J.G. & Buff, F.P. 1949 The statistical mechanical theory of surface tension. J. Chem. Phys. 17 (3), 338343.Google Scholar
Koplik, J. & Banavar, J.R. 1993 Molecular dynamics of interface rupture. Phys. Fluids A 5 (3), 521536.Google Scholar
Kubo, R. 1957 Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12 (6), 570586.Google Scholar
Lagarde, A., Josserand, C. & Protière, S. 2018 Oscillating path between self-similarities in liquid pinch-off. Proc. Natl Acad. Sci. USA 115 (49), 1237112376.Google Scholar
Landau, L.D., Lifshitz, E.M. & Pitaevskij, L.P. 1987 Statistical Physics, Part 2: Theory of the Condensed State. Pergamon.Google Scholar
Li, C., Zhao, L., Mao, Y., Wu, W. & Xu, J. 2015 Focused-ion-beam induced Rayleigh–Plateau instability for diversiform suspended nanostructure fabrication. Sci. Rep. 5 (1), 18.Google Scholar
Liu, J., Zhao, C., Lockerby, D.A. & Sprittles, J.E. 2023 Thermal capillary waves on bounded nanoscale thin films. Phys. Rev. E 107 (1), 015105.Google Scholar
MacCormack, R. 2003 The effect of viscosity in hypervelocity impact cratering. J. Spacecr. Rockets 40, 757763.Google Scholar
Min, D. & Wong, H. 2006 Rayleigh's instability of Lennard-Jones liquid nanothreads simulated by molecular dynamics. Phys. Fluids 18 (2), 024103.Google Scholar
Mo, C., Qin, L., Zhao, F. & Yang, L. 2016 Application of the dissipative particle dynamics method to the instability problem of a liquid thread. Phys. Rev. E 94 (6), 063113.Google Scholar
Molinero, V. & Moore, E.B. 2009 Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113 (13), 40084016.Google Scholar
Moseler, M. & Landman, U. 2000 Formation, stability, and breakup of nanojets. Science 289 (5482), 11651169.Google Scholar
Mu, K., Qiao, R., Ding, H. & Si, T. 2023 Modulation of coaxial cone-jet instability in active co-flow focusing. J. Fluid Mech. 977, A14.Google Scholar
Papageorgiou, D.T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7 (7), 15291544.Google Scholar
Papoulis, A. & Pillai, S.U. 2002 Probability, Random Variables, and Stochastic Processes. McGraw-Hill.Google Scholar
Perumanath, S., Borg, M.K., Chubynsky, M.V., Sprittles, J.E. & Reese, J.M. 2019 Droplet coalescence is initiated by thermal motion. Phys. Rev. Lett. 122 (10), 104501.Google Scholar
Petit, J., Rivière, D., Kellay, H. & Delville, J.-P. 2012 Break-up dynamics of fluctuating liquid threads. Proc. Natl Acad. Sci. USA 109 (45), 1832718331.Google Scholar
Plateau, J.A.F. 1873 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gauthier-Villars.Google Scholar
Proakis, J.G. & Manolakis, D.G. 1996 Digital Signal Processing: Principles, Algorithms, and Applications, 3rd edn. Prentice Hall.Google Scholar
Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.Google Scholar
Rice, J.A. 2007 Mathematical Statistics and Data Analysis, 3rd edn. Duxbury.Google Scholar
Shah, M.S., van Steijn, V., Kleijn, C.R. & Kreutzer, M.T. 2019 Thermal fluctuations in capillary thinning of thin liquid films. J. Fluid Mech. 876, 10901107.Google Scholar
Shi, X.D., Brenner, M.P. & Nagel, S.R. 1994 A cascade of structure in a drop falling from a faucet. Science 265 (5169), 219222.Google Scholar
Thompson, A.P., et al. 2022 LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171.Google Scholar
Tiwari, A., Reddy, H., Mukhopadhyay, S. & Abraham, J. 2008 Simulations of liquid nanocylinder breakup with dissipative particle dynamics. Phys. Rev. E 78 (1), 016305.Google Scholar
Xue, X., Sbragaglia, M., Biferale, L. & Toschi, F. 2018 Effects of thermal fluctuations in the fragmentation of a nanoligament. Phys. Rev. E 98 (1), 012802.Google Scholar
Yang, C., Qiao, R., Mu, K., Zhu, Z., Xu, R.X. & Si, T. 2019 Manipulation of jet breakup length and droplet size in axisymmetric flow focusing upon actuation. Phys. Fluids 31 (9), 091702.Google Scholar
Zhang, B., He, J., Li, X., Xu, F. & Li, D. 2016 Micro/nanoscale electrohydrodynamic printing: from 2D to 3D. Nanoscale 8 (34), 1537615388.Google Scholar
Zhang, Y., Sprittles, J.E. & Lockerby, D.A. 2019 Molecular simulation of thin liquid films: thermal fluctuations and instability. Phys. Rev. E 100 (2), 023108.Google Scholar
Zhao, C., Liu, J., Lockerby, D.A. & Sprittles, J.E. 2022 Fluctuation-driven dynamics in nanoscale thin-film flows: physical insights from numerical investigations. Phys. Rev. Fluids 7 (2), 024203.Google Scholar
Zhao, C., Lockerby, D.A. & Sprittles, J.E. 2020 a Dynamics of liquid nanothreads: fluctuation-driven instability and rupture. Phys. Rev. Fluids 5 (4), 044201.Google Scholar
Zhao, C., Sprittles, J.E. & Lockerby, D.A. 2019 Revisiting the Rayleigh–Plateau instability for the nanoscale. J. Fluid Mech. 861, R3.Google Scholar
Zhao, C., Zhang, Z. & Si, T. 2023 Fluctuation-driven instability of nanoscale liquid films on chemically heterogeneous substrates. Phys. Fluids 35 (7), 072016.Google Scholar
Zhao, C., Zhao, J., Si, T. & Chen, S. 2021 a Influence of thermal fluctuations on nanoscale free-surface flows: a many-body dissipative particle dynamics study. Phys. Fluids 33 (11), 112004.Google Scholar
Zhao, J., Zhou, N., Zhang, K., Chen, S., Liu, Y. & Wang, Y. 2020 b Rupture process of liquid bridges: the effects of thermal fluctuations. Phys. Rev. E 102 (2), 023116.Google Scholar
Zhao, Y., Wan, D., Chen, X., Chao, X. & Xu, H. 2021 b Uniform breaking of liquid-jets by modulated laser heating. Phys. Fluids 33 (4), 044115.Google Scholar