Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:56:08.461Z Has data issue: false hasContentIssue false

Flow transitions in the surface switching of rotating fluid

Published online by Cambridge University Press:  25 September 2009

Y. TASAKA*
Affiliation:
Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
M. IIMA
Affiliation:
Research Institute for Electronic Science, Hokkaido University, N20W10, Sapporo 001-0020, Japan
*
Email address for correspondence: [email protected]

Abstract

We study ‘surface switching’ quantitatively in flows driven by the constant rotation of the endwall of an open cylindrical vessel reported by Suzuki, Iima & Hayase (Phys. Fluids, vol. 18, 2006, p. 101701): the deformed free surface switches between axisymmetric and non-axisymmetric shapes accompanied by irregular vertical oscillation. Detailed simultaneous measurements showed that the magnitude of the velocity fluctuations (turbulent intensity) temporally varies greatly and are strongly correlated with the surface height, suggesting that dynamic switching between laminar and turbulent states is accompanied by vessel-scale surface shape changes. The study also identified clear hysteresis in the turbulent intensity arising from changes in the Reynolds number; the bifurcation diagram consists of two overlapping branches representing a high-intensity (turbulent) state and a low-intensity (laminar) state. Based on the results, a switching mechanism is suggested.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Corwin, E. I. 2008 Granular flow in a rapidly rotated system with fixed walls. Phys. Rev. E 77, 031308.CrossRefGoogle Scholar
Cross, A. & Le Gal, P. 2002 Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk. Phys. Fluids 14, 1038.Google Scholar
Gregory, N., Stuart, J. T. & Walker, W. S. 1955 On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Phil. Trans. R. Soc. Lond. Ser. A 248, 155199.Google Scholar
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 5962.CrossRefGoogle ScholarPubMed
Jansson, T. R. N., Haspang, M. P., Jensen, K. H., Hersen, P. & Bohr, T. 2006 Polygons on a rotating fluids surface. Phys. Rev. Lett. 96, 174502.CrossRefGoogle ScholarPubMed
von Kármán, T. 1921 Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 232252.Google Scholar
Le Gal, P., Tasaka, Y., Nagao, J., Cros, A. & Yamaguchi, K. 2007 A statistical study of spots in torsional Couette flow. J. Engng Math. 57, 289302.CrossRefGoogle Scholar
Lopez, M., Marques, F., Hirsa, A. H. & Miraghaie, R. 2004 Symmetry breaking in free-surface cylinder flows. J. Fluid Mech. 502, 99126.CrossRefGoogle Scholar
Mashiko, T., Tsuji, Y., Mizuno, T. & Sano, M. 2004 Instantaneous measurement of velocity fields in developed thermal turbulence in mercury. Phys. Rev. E 69, 036306.CrossRefGoogle ScholarPubMed
Perry, A. E., Lim, T. T. & Teh, E. W. 1981 A visual study of turbulent spot. J. Fluid Mech. 104, 387405.CrossRefGoogle Scholar
Reed, H. L. & Saric, W. S. 1989 Stability of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 21, 235284.CrossRefGoogle Scholar
Shatrov, V., Gerbeth, G. & Hermann, R. 2008 An alternating magnetic field driven flow in a spinning cylindrical container. J. Fluids Engng 130, 071201.CrossRefGoogle Scholar
Suzuki, T., Iima, M. & Hayase, Y. 2006 Surface switching of rotating fluid in a cylinder. Phys. Fluids 18, 101701.CrossRefGoogle Scholar
Takeda, Y. 1995 Instantaneous velocity profile measurement by ultrasonic Doppler method. JSME Intl J. B38, 816.CrossRefGoogle Scholar
Takeda, Y. 1996 Quasi-periodic state and transition to turbulence in a rotating Couette system. J. Fluid Mech. 389, 8199.CrossRefGoogle Scholar
Tasaka, Y., Iima, M. & Ito, K. 2008 a Rotating flow transition related to surface switching. J. Phys.: Conf. Ser. 137, 012030.Google Scholar
Tasaka, Y., Ito, K. & Iima, M. 2008 b Visualization of a rotating flow under large-deformed free surface using anisotropic flakes. J. Vis. 11-2, 163172.CrossRefGoogle Scholar
Tasaka, Y., Kon, S., Schouveiler, L. & Le Gal, P. 2006 Hysteretic mode exchange in the wake of two circular cylinders in tandem. Phys. Fluids 18, 084104.CrossRefGoogle Scholar
Tasaka, Y., Yano, K. & Iima, M. 2008 c Ultrasonic investigation of flow transition in surface switching of rotating fluid. Proceedings of the Sixth Intl Symp. on Ultrasonic Doppler Method. PDF of the paper is available on the web; http://isud6.fsr.cvut.cz/CrossRefGoogle Scholar
Vatistas, G. H. 1990 A note on liquid vortex sloshing and Kelvin's equilibria. J. Fluid Mech. 217, 241248.CrossRefGoogle Scholar
Vatistas, G. H., Abderrahmane, H. A. & Siddiqui, M. H. K. 2008 Experimental confirmation of Kelvin's equilibria. Phys. Rev. Lett. 100, 174503.CrossRefGoogle ScholarPubMed
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281335.CrossRefGoogle Scholar