Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T04:55:48.517Z Has data issue: false hasContentIssue false

Flow separation from a stationary meniscus

Published online by Cambridge University Press:  25 August 2009

J. SÉBILLEAU
Affiliation:
Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
L. LIMAT
Affiliation:
Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
J. EGGERS*
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
*
Email address for correspondence: [email protected]

Abstract

We consider the steady flow near a free surface at intermediate to high Reynolds numbers, both experimentally and theoretically. In our experiment, an axisymmetric capillary meniscus is suspended from a cylindrical tube, held slightly above a horizontal water surface. A flow of dyed water is released through the tube into the reservoir, and flow lines are thus recorded. At low Reynolds numbers, flow lines follow the free surface, and injected water spreads horizontally inside the container. Increasing the Reynolds number, the injected fluid penetrates to a certain distance into the bath, but ultimately follows the free surface. Above a critical Reynolds number of approximately 60, the flow separates from the free surface in the meniscus region and a jet projects vertically into the bath. We find no indication that the flow reattaches at higher Reynolds numbers, nor are our findings sensitive to surface contamination. We show theoretically and confirm experimentally that the separating streamline forms a right angle with the free surface.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bin, A. K. 1993 Gas entrainment by plunging liquid jets. Chem. Engng Sci. 48, 35853630.CrossRefGoogle Scholar
Birkhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes, and Cavities. Academic.Google Scholar
Blanco, A. & Magnaudet, J. 1995 The structure of the axisymmetric high-Reynolds-number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 12651274.CrossRefGoogle Scholar
Brocchini, M. & Peregrine, D. H. 2001 a The dynamics of strong turbulence at free surfaces. Part 1. {Description}. J. Fluid Mech. 449, 225254.CrossRefGoogle Scholar
Brocchini, M. & Peregrine, D. H. 2001 b The dynamics of strong turbulence at free surfaces. Part 2. {The boundary conditions}. J. Fluid Mech. 449, 255290.CrossRefGoogle Scholar
Dandy, D. S. & Leal, L. G. 1986 Boundary-layer separation from a smooth slip surface. Phys. Fluids 29, 13601366.CrossRefGoogle Scholar
Harper, J. F. 1972 Motion of bubbles and drops through liquids. Adv. Appl. Mech. 12, 59129.CrossRefGoogle Scholar
Harper, J. F. & Moore, D. W. 1968 The motion of a spherical liquid drop at high Reynolds number. J. Fluid Mech. 32, 367391.CrossRefGoogle Scholar
Leal, L. G. 1989 Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys. Fluids A 1, 124131.CrossRefGoogle Scholar
Lin, T. J. & Donnelly, H. G. 1966 Gas bubble entrainment by plunging laminar liquid jets. AIChE J. 12, 563571.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1992 Capillary rollers and bores. J. Fluid Mech. 240, 659679.CrossRefGoogle Scholar
Lugt, H. J. 1987 Local flow properties at a viscous free surface. Phys. Fluids 30, 36473652.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.CrossRefGoogle Scholar
Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.CrossRefGoogle Scholar
Schlichting, H. 1987 Boundary Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Smith, F. T. 1986 Steady and unsteady boundary layer separation. Ann. Rev. Fluid Mech. 18, 197220.CrossRefGoogle Scholar
Sychev, V. V., Ruban, A. I., Sychev, V. V. & Korolev, G. L. 1998 Aymptotic Theory of Separated Flows. Cambridge University Press.CrossRefGoogle Scholar
Zenit, R. & Magnaudet, J. 2008 Path instability of rising spheroidal bubbles: a shape-controlled process. Phys. Fluids 20, 061702 (1–4).CrossRefGoogle Scholar