Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T21:57:07.509Z Has data issue: false hasContentIssue false

Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water

Published online by Cambridge University Press:  14 September 2009

KAZUYASU SUGIYAMA
Affiliation:
Physics of Fluids Group, Department of Applied Physics, J. M. Burgers Centre for Fluid Dynamics, and Impact-, MESA- and BMTI-Institutes, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
ENRICO CALZAVARINI
Affiliation:
Physics of Fluids Group, Department of Applied Physics, J. M. Burgers Centre for Fluid Dynamics, and Impact-, MESA- and BMTI-Institutes, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
SIEGFRIED GROSSMANN*
Affiliation:
Fachbereich Physik der Philipps-Universitaet, Renthof 6, D-35032 Marburg, Germany
DETLEF LOHSE*
Affiliation:
Physics of Fluids Group, Department of Applied Physics, J. M. Burgers Centre for Fluid Dynamics, and Impact-, MESA- and BMTI-Institutes, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

Non-Oberbeck–Boussinesq (NOB) effects on the flow organization in two-dimensional Rayleigh–Bénard turbulence are numerically analysed. The working fluid is water. We focus on the temperature profiles, the centre temperature, the Nusselt number and on the analysis of the velocity field. Several velocity amplitudes (or Reynolds numbers) and several kinetic profiles are introduced and studied; these together describe the various features of the rather complex flow organization. The results are presented both as functions of the Rayleigh number Ra (with Ra up to 108) for fixed temperature difference Δ between top and bottom plates and as functions of Δ (‘non-Oberbeck–Boussinesqness’) for fixed Ra with Δ up to 60K. All results are consistent with the available experimental NOB data for the centre temperature Tc and the Nusselt number ratio NuNOB/NuOB (the label OB meaning that the Oberbeck–Boussinesq conditions are valid). For the temperature profiles we find – due to plume emission from the boundary layers – increasing deviations from the extended Prandtl–Blasius boundary layer theory presented in Ahlers et al. (J. Fluid Mech., vol. 569, 2006, p. 409) with increasing Ra, while the centre temperature itself is surprisingly well predicted by that theory. For given non-Oberbeck–Boussinesqness Δ, both the centre temperature Tc and the Nusselt number ratio NuNOB/NuOB only weakly depend on Ra in the Ra range considered here.

Beyond Ra ≈ 106 the flow consists of a large diagonal centre convection roll and two smaller rolls in the upper and lower corners, respectively (‘corner flows’). Also in the NOB case the centre convection roll is still characterized by only one velocity scale. In contrast, the top and bottom corner flows are then of different strengths, the bottom one being a factor 1.3 faster (for Δ = 40K) than the top one, due to the lower viscosity in the hotter bottom boundary layer. Under NOB conditions the enhanced lower corner flow as well as the enhanced centre roll lead to an enhancement of the volume averaged energy based Reynolds number of about 4% to 5% for Δ = 60K. Moreover, we find , with β the thermal expansion coefficient and Tm the arithmetic mean temperature between top and bottom plate temperatures. This corresponds to the ratio of the free fall velocities at the respective temperatures. By artificially switching off the temperature dependence of β in the numerics, the NOB modifications of ReE is less than 1% even at Δ = 60K, revealing the temperature dependence of the thermal expansion coefficient as the main origin of the NOB effects on the global Reynolds number in water.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Brown, E., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.CrossRefGoogle Scholar
Ahlers, G., Calzavarini, E., Fontenele Araujo, F., Funfschilling, D., Grossmann, S., Lohse, D. & Sugiyama, K. 2008 Non-Oberbeck–Boussinesq effects in turbulent thermal convection in ethane close to the critival point. Phys. Rev. E77, 046302.Google Scholar
Ahlers, G., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 054501.CrossRefGoogle ScholarPubMed
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503538.CrossRefGoogle Scholar
Amati, G., Koal, K., Massaioli, F., Sreenivasan, K. R. & Verzicco, R. 2005 Turbulent thermal convection at high Rayleigh numbers for a constant-Prandtl-number fluid under Boussinesq conditions. Phys. Fluids 17, 121701.CrossRefGoogle Scholar
Amsden, A. A. & Harlow, F. H. 1970 A simplified mac technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322325.CrossRefGoogle Scholar
Ashkenazi, S. & Steinberg, V. 1999 High Rayleigh number turbulent convection in a gas near the gas–liquid critical point. Phys. Rev. Lett. 83, 36413644.CrossRefGoogle Scholar
Belmonte, A., Tilgner, A. & Libchaber, A. 1993 Boundary layer length scales in thermal turbulence. Phys. Rev. Lett. 70, 40474070.CrossRefGoogle ScholarPubMed
Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50, 269279.CrossRefGoogle ScholarPubMed
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95, 024502.CrossRefGoogle Scholar
Boussinesq, J. 1903 Theorie analytique de la chaleur, vol. 2. Gauthier-Villars.Google Scholar
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.CrossRefGoogle ScholarPubMed
Brown, E., Funfschilling, D. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. P10005.CrossRefGoogle Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Chavanne, X., Chilla, F., Castaing, B., Hebral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.CrossRefGoogle Scholar
Chavanne, X., Chilla, F., Chabaud, B., Castaing, B. & Hebral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.CrossRefGoogle Scholar
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54, R5901R5904.CrossRefGoogle ScholarPubMed
Ciliberto, S. & Laroche, C. 1999 Random roughness of boundary increases the turbulent convection scaling exponent. Phys. Rev. Lett. 82, 39984001.CrossRefGoogle Scholar
DeLuca, E. E., Werne, J., Rosner, R. & Cattaneo, F. 1990 Numerical simulations of soft and hard turbulence – preliminary-results for 2-dimensional convection. Phys. Rev. Lett. 64, 2370.CrossRefGoogle Scholar
Ferziger, J. H. & Perić, M. 1996 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
Fontenele Araujo, F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084502.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.CrossRefGoogle Scholar
Grötzbach, G. 1983 Spatial resolution for direct numerical simulations of Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.CrossRefGoogle Scholar
Hansen, U., Yuen, D. A. & Kroening, S. E. 1992 Mass and heat-transfer in strongly time-dependent thermal convection at infinite Prandtl number. Geophys. Astrophys. Fluid Dyn. 63, 6789.CrossRefGoogle Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.CrossRefGoogle Scholar
van Heijst, G. J. F., Clercx, H. J. H. & Molenaar, D. 2006 The effects of solid boundaries on confined two-dimensional turbulence. J. Fluid. Mech. 554, 411431.CrossRefGoogle Scholar
Johnston, H. & Doering, C. R. 2009 Rayleigh–Bénard convection with imposed heat flux. Phys. Rev. Lett. 102, 064501.CrossRefGoogle Scholar
Kajishima, T., Takiguchi, S., Hamasaki, H. & Miyake, Y. 2001 Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding. JSME Intl J. Ser. B 44, 526535.CrossRefGoogle Scholar
Lam, S., Shang, X. D., Zhou, S. Q. & Xia, K.-Q. 2002 Prandtl number dependence of the viscous boundary layer and the Reynolds number in Rayleigh–Bénard convection. Phys. Rev. E 65, 066306.CrossRefGoogle ScholarPubMed
Lohse, D. & Grossmann, S. 1993 Characteristic scales in Rayleigh–Bénard turbulence. Phys. Lett. A 173, 5862.Google Scholar
Luijkx, J. & Platten, J. 1981 On the onset of free convection in a rectangular channel. J. Non-Equilib. Thermodyn. 6, 141158.CrossRefGoogle Scholar
Niemela, J., Skrebek, L., Sreenivasan, K. R. & Donnelly, R. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Niemela, J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2001 The wind in confined thermal turbulence. J. Fluid Mech. 449, 169178.CrossRefGoogle Scholar
Niemela, J. & Sreenivasan, K. R. 2003 Confined turbulent convection. J. Fluid Mech. 481, 355384.CrossRefGoogle Scholar
Oberbeck, A. 1879 über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271.CrossRefGoogle Scholar
Peyret, R. & Taylor, T. D. 1983 Computational Methods for Fluid Flow. Springer.CrossRefGoogle Scholar
Qiu, X. L., Shang, X. D., Tong, P. & Xia, K.-Q. 2004 Velocity oscillations in turbulent Rayleigh–Bénard convection. Phys. Fluids 16, 412423.CrossRefGoogle Scholar
Qiu, X. L. & Xia, K.-Q. 1998 Viscous boundary layers at the sidewall of a convection cell. Phys. Rev. E 58, 486491.CrossRefGoogle Scholar
Roche, P. E., Castaing, B., Chabaud, B. & Hebral, B. 2001 Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303.CrossRefGoogle Scholar
Roche, P. E., Castaing, B., Chabaud, B. & Hebral, B. 2002 Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection. Europhys. Lett. 58, 693698.CrossRefGoogle Scholar
Schmalzl, J., Breuer, M. & Hansen, U. 2004 On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 67, 390396.CrossRefGoogle Scholar
Shishkina, O. & Wagner, C. 2008 Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 599, 383404.CrossRefGoogle Scholar
Sreenivasan, K. R., Bershadski, A. & Niemela, J. J. 2002 Mean wind and its reversals in thermal convection. Phys. Rev. E 65, 056306.CrossRefGoogle ScholarPubMed
Stevens, R., Verzicco, R. & Lohse, D. Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. (Submitted)Google Scholar
Stringano, G. & Verzicco, R. 2006 Mean flow structure in thermal convection in a cylindrical cell of aspect-ratio one half. J. Fluid Mech. 548, 116.CrossRefGoogle Scholar
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh–Bénard convection in glycerol. Europhys. Lett. 80, 34002.CrossRefGoogle Scholar
Sun, C., Xi, H.-D. & Xia, K.-Q. 2005 a Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Sun, C., Xia, K.-Q. & Tong, P. 2005 b Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. The MIT Press.CrossRefGoogle Scholar
Threlfall, D. C. 1975 Free convection in low-temperature gaseous helium. J. Fluid Mech. 67, 1728.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Werne, J. 1993 Structure of hard-turbulent convection in two-dimensions: numerical evidence. Phys. Rev. E 48, 10201035.CrossRefGoogle ScholarPubMed
Werne, J., DeLuca, E. E., Rosner, R. & Cattaneo, F. 1991 Development of hard-turbulent convection in 2 dimensions – numerical evidence. Phys. Rev. Lett. 67, 3519.CrossRefGoogle Scholar
Wu, X. Z. & Libchaber, A. 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 28332839.CrossRefGoogle ScholarPubMed
Xi, H. D., Lam, S. & Xia, K.-Q., From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xia, K.-Q., Sun, C. & Zhou, S. Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.CrossRefGoogle ScholarPubMed
Xin, Y.-B. & Xia, K.-Q. 1997 Boundary layer length scales in convective turbulence. Phys. Rev. E 56, 30103015.CrossRefGoogle Scholar
Zhang, J., Childress, S. & Libchaber, A. 1997 Non-Boussinesq effect: thermal convection with broken symmetry. Phys. Fluids 9, 10341042.CrossRefGoogle Scholar