Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T15:38:25.296Z Has data issue: false hasContentIssue false

Flow of a viscous nematic fluid around a sphere

Published online by Cambridge University Press:  14 May 2013

Manuel Gómez-González*
Affiliation:
Mechanical and Aerospace Engineering Department, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA
Juan C. del Álamo
Affiliation:
Mechanical and Aerospace Engineering Department, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, USA Institute for Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0435, USA
*
Email address for correspondence: [email protected]

Abstract

We analyse the creeping flow generated by a spherical particle moving through a viscous fluid with nematic directional order, in which momentum diffusivity is anisotropic and which opposes resistance to bending. Specifically, we provide closed-form analytical expressions for the response function, i.e. the equivalent to Stokes’s drag formula for nematic fluids. Particular attention is given to the rotationally pseudo-isotropic condition defined by zero resistance to bending, and to the strain pseudo-isotropic condition defined by isotropic momentum diffusivity. We find the former to be consistent with the rheology of biopolymer networks and the latter to be closer to the rheology of nematic liquid crystals. These ‘pure’ anisotropic conditions are used to benchmark existing particle tracking microrheology methods that provide effective directional viscosities by applying Stokes’s drag law separately in different directions. We find that the effective viscosity approach is phenomenologically justified in rotationally isotropic fluids, although it leads to significant errors in the estimated viscosity coefficients. On the other hand, the mere concept of directional effective viscosities is found to be misleading in fluids that oppose an appreciable resistance to bending. Finally, we observe that anisotropic momentum diffusivity leads to asymmetric streamline patterns displaying enhanced (reduced) streamline deflection in the directions of lower (higher) diffusivity. The bending resistance of the fluid is found to modulate the asymmetry of streamline deflection. In some cases, the combined effects of both anisotropy mechanisms leads to streamline patterns that converge towards the sphere.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beale, J. T. & Lai, M.-C. 2001 A method for computing nearly singular integrals. SIAM J. Numer. Anal. 38 (6), 19021925.CrossRefGoogle Scholar
Beens, W. W. & de Jeu, W. H. 1983 Flow-measurements of the viscosity coefficients of 2 nematic liquid-crystalline azoxybenzenes. J. Phys. 44 (2), 129136.CrossRefGoogle Scholar
Brake, J. M., Daschner, M. K., Luk, Y.-Y. & Abbott, N. L. 2003 Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302 (5653), 20942097.CrossRefGoogle ScholarPubMed
Chen, C. S., Tan, J. & Tien, J. 2004 Mechanotransduction at cell–matrix and cell–cell contacts. Annu. Rev. Biomed. Engng 6, 275302.CrossRefGoogle ScholarPubMed
Chien, S. 2007 Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292 (3), H1209H1224.CrossRefGoogle ScholarPubMed
Chretien, F. C. 2003 Involvement of the glycoproteic meshwork of cervical mucus in the mechanism of sperm orientation. Acta Obstet. Gynecol. Scand. 82 (5), 449461.CrossRefGoogle ScholarPubMed
Cortez, R. 2001 The method of regularied stokeslets. SIAM J. Sci. Comput. 23 (4), 12041225.CrossRefGoogle Scholar
Crocker, J. C. & Hoffman, B. D. 2007 Multiple-particle tracking and two-point microrheology in cells. Meth. Cell Biol. 83, 141178.CrossRefGoogle ScholarPubMed
Crocker, J. C., Valentine, M. T., Weeks, E. R., Gisler, T., Kaplan, P. D., Yodh, A. G. & Weitz, D. A. 2000 Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85 (4), 888891.CrossRefGoogle ScholarPubMed
De Gennes, P. G. & Prost, J. 1993 The Physics of Liquid Crystals, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
del Álamo, J. C., Norwich, G. N., Li, Y.-S. J., Lasheras, J. C. & Chien, S. 2008 Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc. Natl Acad. Sci. USA 105 (40), 1541115416.CrossRefGoogle ScholarPubMed
Ericksen, J. L. 1960 Anisotropic fluids. Arch. Rat. Mech. Anal. 4 (15), 231237.CrossRefGoogle Scholar
Frank, F. C. 1958 On the theory of liquid crystals. Discuss. Faraday Soc. (25), 1928.CrossRefGoogle Scholar
Fu, H. C., Shenoy, V. B. & Powers, T. R. 2008 Role of slip between a probe particle and a gel in microrheology. Phys. Rev. E 78 (6), 061503.CrossRefGoogle Scholar
Gähwiller, Ch. 1971 The viscosity coefficients of a room-temperature liquid crystal (MBBA). Phys. Lett. A 36 (4), 311312.CrossRefGoogle Scholar
Galbraith, C. G., Skalak, R. & Chien, S. 1998 Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskel. 40 (4), 317330.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Gittes, F., Schnurr, B., Olmsted, P. D., MacKintosh, F. C. & Schmidt, C. F. 1997 Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79 (17), 32863289.CrossRefGoogle Scholar
Hasnain, I. A. & Donald, A. M. 2006 Microrheological characterization of anisotropic materials. Phys. Rev. E 73 (3), 031901.CrossRefGoogle ScholarPubMed
He, J., Mak, M., Liu, Y. & Tang, J. X. 2008 Counterion-dependent microrheological properties of f-actin solutions across the isotropic–nematic phase transition. Phys. Rev. E 78 (1), 011908.CrossRefGoogle ScholarPubMed
Herba, H., Szymanski, A. & Drzymala, A. 1985 Experimental test of hydrodynamic theories for nematic liquid-crystals. Mol. Cryst. Liq. Cryst. 127 (1), 153158.CrossRefGoogle Scholar
Heuer, H., Kneppe, H. & Schneider, F. 1992 Flow of a nematic liquid-crystal around a sphere. Mol. Cryst. Liq. Cryst. 214, 4361.CrossRefGoogle Scholar
Janik, J., Moscicki, J. K., Czuprynski, K. & Dabrowski, R. 1998 Miesowicz viscosities study of a two-component thermotropic mixture. Phys. Rev. E 58 (3), 32513258.CrossRefGoogle Scholar
Kaunas, R., Nguyen, P., Usami, S. & Chien, S. 2005 Cooperative effects of Rho and mechanical stretch on stress fibre organization. Proc. Natl Acad. Sci. USA 44, 1589515900.CrossRefGoogle Scholar
Kim, S. & Karrila, S. J. 2005 Microhydrodynamics – Principles and Selected Applications. Dover.Google Scholar
Kneppe, H. & Schneider, F. 1981 Determination of the viscosity coefficients of the liquid-crystal MBBA. Mol. Cryst. Liq. Cryst. 65 (1–2), 2337.CrossRefGoogle Scholar
Kneppe, H., Schneider, F. & Schwesinger, B. 1991 Axisymmetrical flow of a nematic liquid crystal around a sphere. Mol. Cryst. Liq. Cryst. 205, 928.CrossRefGoogle Scholar
Koenig, G. M., Ong, R., Cortes, A. D., Moreno-Razo, J. A., de Pablo, J. J. & Abbott, N. L. 2009 Single nanoparticle tracking reveals influence of chemical functionality of nanoparticles on local ordering of liquid crystals and nanoparticle diffusion coefficients. Nano Lett. 9 (7), 27942801.CrossRefGoogle ScholarPubMed
Kole, T. P., Tseng, Y., Jiang, I., Katz, J. L. & Wirtz, D. 2005 Intracellular mechanics of migrating fibroblasts. Mol. Biol. Cell 16 (1), 328338.CrossRefGoogle ScholarPubMed
Ladyzhenskaya, O. A. 1969 The Mathematical Theory of Viscous Incompressible Flow, second English edn. Gordon and Breach Science.Google Scholar
Lammerding, J. & Lee, R. T. 2005 The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found. Symp. 264, 264273.CrossRefGoogle ScholarPubMed
Langevin, D. 1972 Spectrum analysis of light scattered from free-surface of a nematic liquid-crystal – surface-tension and viscosity measurements. J. Phys. 33 (2–3), 249256.CrossRefGoogle Scholar
Lee, J. S. H., Chang, M. I., Tseng, Y. & Wirtz, D. 2005 CDC42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol. Biol. Cell 16 (2), 871880.CrossRefGoogle ScholarPubMed
Lee, H.-H., Lee, H.-C., Chou, C.-C., Hur, S. S., Osterday, K., del Álamo, J. C., Lasheras, J. C. & Chien, S. 2013 Shp2 plays a crucial role in cell structural orientation and force polarity in response to matrix rigidity. Proc. Natl Acad. Sci. USA 110 (8), 28402845.CrossRefGoogle Scholar
Leslie, F. M. 1966 Some constitutive equations for anisotropic fluids. Q. J. Mech. Appl. Maths 19 (3), 357370.CrossRefGoogle Scholar
Levine, A. J. & Lubensky, T. C. 2000 One- and two-particle microrheology. Phys. Rev. Lett. 85 (8), 17741777.CrossRefGoogle ScholarPubMed
Levine, A. J. & Lubensky, T. C. 2001 Response function of a sphere in a viscoelastic two-fluid medium. Phys. Rev. E 63 (4), 041510.CrossRefGoogle Scholar
Lin, A., Krockmalnic, G. & Penman, S. 1990 Imaging cytoskeleton mitochondrial-membrane attachments by embedment-free electron-microscopy of saponin-extracted cells. Proc. Natl Acad. Sci. USA 87 (21), 85658569.CrossRefGoogle ScholarPubMed
Liron, N. & Barta, E. 1992 Motion of a rigid particle in Stokes flow: a new second-kind boundary-integral equation formulation. J. Fluid Mech. 238, 579598.CrossRefGoogle Scholar
Loudet, J.-C., Barois, P. & Poulin, P. 2000 Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature 407 (6804), 611613.CrossRefGoogle Scholar
Loudet, J. C., Hanusse, P. & Poulin, P. 2004 Stokes drag on a sphere in a nematic liquid crystal. Science 306 (5701), 1525–1525.CrossRefGoogle Scholar
Luby-Phelps, K. 2000 Cytoarchitecture and physical properties of cytoplasm: volume, viscosity. diffusion, intracellular surface area. Intl Rev. Cytol. 192, 189221.CrossRefGoogle ScholarPubMed
Luby-Phelps, K., Taylor, D. L. & Lanni, F. 1986 Probing the structure of cytoplasm. J. Cell Biol. 102 (6), 20152022.CrossRefGoogle ScholarPubMed
Mason, T. G. 2000 Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol. Acta 39 (4), 371378.CrossRefGoogle Scholar
Mason, T. G., Ganesan, K., van Zanten, J. H., Wirtz, D. & Kuo, S. C. 1997 Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79 (17), 32823285.CrossRefGoogle Scholar
Mason, T. G. & Weitz, D. A. 1995 Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74 (7), 12501253.CrossRefGoogle ScholarPubMed
McGrath, J. L., Hartwig, J. H. & Kuo, S. C. 2000 The mechanics of f-actin microenvironments depend on the chemistry of probing surfaces. Biophys. J. 79 (6), 32583266.CrossRefGoogle ScholarPubMed
Miesowicz, M. 1936 Influence of the magnetic field on the viscosity of liquids in the nematic phase. Bull. Intl Acad. Pol. Sci. Lett. (5–6), 228247.Google Scholar
Miesowicz, M. 1946 The three coefficients of viscosity of anisotropic liquids. Nature 158 (4001), 27–27.CrossRefGoogle ScholarPubMed
Minin, A. A., Kulik, A. V., Gyoeva, F. K., Li, Y., Goshima, G. & Gelfand, V. I. 2006 Regulation of mitochondria distribution by rhoa and formins. J. Cell Sci. 119 (4), 659670.CrossRefGoogle ScholarPubMed
Moreno-Razo, J. A., Sambriski, E. J., Koenig, G. M., Díaz-Herrera, E., Abbott, N. L. & de Pablo, J. J. 2011 Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids. Soft Matt. 7 (15), 68286835.CrossRefGoogle Scholar
Orsay Liquid Crystal Group, 1971 Viscosity measurements by quasi elastic light scattering in p-azoxyanisol. Mol. Cryst. Liq. Cryst. 13 (2), 187191.CrossRefGoogle Scholar
Parodi, O. 1970 Stress tensor for a nematic liquid crystal. J. Phys. 31 (7), 581584.CrossRefGoogle Scholar
Pokrovskii, V. N. & Tskhai, A. A. 1986 Slow motion of a particle in a weakly anisotropic viscous fluid. PMM J. Appl. Math. Mech. 50 (3), 391394.CrossRefGoogle Scholar
Pollard, T. D. & Borisy, G. G. 2003 Cellular motility driven by assembly and disassembly of actin filaments. Cell 112 (4), 453465.CrossRefGoogle ScholarPubMed
Poulin, P., Stark, H., Lubensky, T. C. & Weitz, D. A. 1997 Novel colloidal interactions in anisotropic fluids. Science 275 (5307), 17701773.CrossRefGoogle ScholarPubMed
Rogers, S. S., Waigh, T. A. & Lu, J. R. 2008 Intracellular microrheology of motile amoeba proteus. Biophys. J. 94 (8), 33133322.CrossRefGoogle ScholarPubMed
Ruhwandl, R. W. & Terentjev, E. M. 1996 Friction drag on a particle moving in a nematic liquid crystal. Phys. Rev. E 54 (5), 52045210.CrossRefGoogle Scholar
Scherp, P. & Hasenstein, K. H. 2007 Anisotropic viscosity of the Chara (Characeae) rhizoid cytoplasm. Am. J. Bot. 94 (12), 19301934.CrossRefGoogle ScholarPubMed
Skarp, K., Lagerwall, S. T. & Stebler, B. 1980 Measurements of hydrodynamic parameters for nematic 5CB. Mol. Cryst. Liq. Cryst. 60 (3), 215236.CrossRefGoogle Scholar
Squires, T. M. 2008 Nonlinear microrheology: bulk stresses versus direct interactions. Langmuir 24 (4), 11471159.CrossRefGoogle ScholarPubMed
Squires, T. M. & Mason, T. G. 2010 Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413438.CrossRefGoogle Scholar
Stark, H. & Lubensky, T. C. 2003 Poisson-bracket approach to the dynamics of nematic liquid crystals. Phys. Rev. E 67 (6), 061709.CrossRefGoogle Scholar
Stark, H. & Ventzki, D. 2001 Stokes drag of spherical particles in a nematic environment at low Ericksen numbers. Phys. Rev. E 64 (3), 031711.CrossRefGoogle Scholar
Stenull, O. & Lubensky, T. C. 2004 Dynamics of nematic elastomers. Phys. Rev. E 69 (5), 051801.CrossRefGoogle ScholarPubMed
Su, J., Jiang, X., Welsch, R., Whitesides, G. M. & So, P. T. C. 2007 Geometric confinement influences cellular mechanical properties I – adhesion area dependence. Mol. Cell. Biomech. 4 (2), 87104.Google ScholarPubMed
Tseng, Y., Kole, T. P. & Wirtz, D. 2002 Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83 (6), 31623176.CrossRefGoogle ScholarPubMed
Tseng, H. C., Silver, D. L. & Finlayson, B. A. 1972 Application of the continuum theory to nematic liquid crystals. Phys. Fluids 15 (7), 12131222.CrossRefGoogle Scholar
Valentine, M. T., Perlman, Z. E., Gardel, M. L., Shin, J. H., Matsudaira, P., Mitchison, T. J. & Weitz, D. A. 2004 Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials. Biophys. J. 86 (6), 40044014.CrossRefGoogle ScholarPubMed
Wang, C. Y. 2003 Stokes slip flow through square and triangular arrays of circular cylinders. Fluid Dyn. Res. 32 (5), 233246.CrossRefGoogle Scholar
Wang, N., Butler, J. P. & Ingber, D. E. 1993 Mechanotransduction across the cell surface and through the cytoskeleton. Science 260 (5111), 11241127.CrossRefGoogle ScholarPubMed
Wang, H., Wu, T. X., Gauza, S., Wu, J. R. & Wu, S.-T. 2006 A method to estimate the leslie coefficients of liquid crystals based on MBBA data. Liq. Cryst. 33 (1), 9198.CrossRefGoogle Scholar
Yanai, M., Butler, J. P., Suzuki, T., Sasaki, H. & Higuchi, H. 2004 Regional rheological differences in locomoting neutrophils. Am. J. Physiol. Cell Physiol. 287 (3), C603C611.CrossRefGoogle ScholarPubMed