Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T22:00:13.357Z Has data issue: false hasContentIssue false

Flotation and free surface flow in a model for subglacial drainage. Part 1. Distributed drainage

Published online by Cambridge University Press:  23 May 2012

Christian Schoof*
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, BC, V6T 1Z4, Canada
Ian J. Hewitt
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada
Mauro A. Werder
Affiliation:
Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
*
Email address for correspondence: [email protected]

Abstract

We present a continuum model for melt water drainage through a spatially distributed system of connected subglacial cavities, and consider in this context the complications introduced when effective pressure or water pressure drops to zero. Instead of unphysically allowing water pressure to become negative, we model the formation of a partially vapour- or air-filled space between ice and bed. Likewise, instead of allowing sustained negative effective pressures, we allow ice to separate from the bed at zero effective pressure. The resulting model is a free boundary problem in which an elliptic obstacle problem determines hydraulic potential, and therefore also determines regions of zero effective pressure and zero water pressure. This is coupled with a transport problem for stored water, and the coupled system bears some similarities with Hele-Shaw and squeeze-film models. We present a numerical method for computing time-dependent solutions, and find close agreement with semi-analytical travelling wave and steady-state solutions. As may be expected, we find that ice–bed separation is favoured by high fluxes and low ice surface slopes and low bed slopes, while partially filled cavities are favoured by low fluxes and high slopes. At the boundaries of regions with zero water or effective pressure, discontinuities in water level are frequently present, either in the form of propagating shocks or as stationary hydraulic jumps accompanied by discontinuities in potential gradient.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alley, R.B. & Bindschadler, R.A.  (Eds) 2001 The West Antarctic Ice Sheet: Behaviour and Environment. American Geophysical Union.CrossRefGoogle Scholar
2. Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A. & Sole, A. 2010 Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nature Geosci. 3, 408411.CrossRefGoogle Scholar
3. Björnsson, H. 2002 Subglacial lakes and jökulhlaups in Iceland. Glob. Planet. Change 35, 255271.CrossRefGoogle Scholar
4. Budd, W. F., Keage, P. L. & Blundy, N. A. 1979 Empirical studies of ice sliding. J. Glaciol. 23 (89), 157170.CrossRefGoogle Scholar
5. Clarke, G. K. C. 1976 Thermal regulation of glacier surging. J. Glaciol. 16 (74), 231250.CrossRefGoogle Scholar
6. Clarke, G. K. C. 1996 Lumped-element analysis of subglacial hydraulic circuits. J. Geophys. Res. 101 (B8), 1754717559.CrossRefGoogle Scholar
7. Creyts, T. T. & Schoof, C. G. 2009 Drainage through subglacial water sheets. J. Geophys. Res. 114 (F04008), doi:10.1029/2008JF001215.CrossRefGoogle Scholar
8. Cuffey, K. M., Conway, H., Hallet, B., Gades, T. M. & Raymond, C. F. 1999 Interfacial water in polar glaciers and glacier sliding at . Geophys. Res. Lett. 26 (6), 751754.CrossRefGoogle Scholar
9. Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde, D. & Bhatia, M. P. 2008 Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 320, 778781.CrossRefGoogle Scholar
10. Ekeland, I. & Temam, R. 1976 Convex Analysis and Variational Problems. North-Holland.Google Scholar
11. Engelhardt, H. & Kamb, B. 1997 Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J. Glaciol. 43 (144), 207230.CrossRefGoogle Scholar
12. Evans, L. C. 1998 Partial Differential Equations. American Mathematical Society.Google Scholar
13. Flowers, G. E. 2008 Subglacial modulation of the hydrograph from glacierized basins. Hydrol. Process. 22, 39033918.CrossRefGoogle Scholar
14. Flowers, G. E., Björnsson, H., Palsson, F. & Clarke, G. K. C. 2004 A coupled sheet-conduit mechanism for jökulhlaup propagation. Geophys. Res. Lett. 31 (5), L05401.CrossRefGoogle Scholar
15. Flowers, G. E. & Clarke, G. K. C. 2002 A multi-component model of glacier hydrology. J. Geophys. Res 107 (2287), doi:10.1029/2001JB001122.CrossRefGoogle Scholar
16. Flowers, G. E., Marshall, S. J., Björnsson, H. & Clarke, G. K. C. 2005 Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries. J. Geophys. Res. 110 (F2), F02011.CrossRefGoogle Scholar
17. Fowler, A. C. 1986 A sliding law for glaciers of constant viscosity in the presence of subglacial cavitation. Proc. R. Soc. Lond. A 407, 147170.Google Scholar
18. Fowler, A. C. 1987 Sliding with cavity formation. J. Glaciol. 33 (105), 255267.CrossRefGoogle Scholar
19. Fowler, A. C. 1989 A mathematical analysis of glacier surges. SIAM J. Appl. Maths 49 (1), 246263.CrossRefGoogle Scholar
20. Fowler, A. C. 2009 Instability modelling of drumlin formation incorporating lee-side cavity growth. Proc. R. Soc. Lond. A 465 (2109), 26812702.Google Scholar
21. Fowler, A. C., Murray, T. & Ng, F. S. L. 2001 Thermally controlled glacier surging. J. Glaciol. 47 (159), 527538.CrossRefGoogle Scholar
22. Gagliardini, O., Cohen, D., Raback, P. & Zwinger, T. 2007 Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res. 112 (F2), F02027.Google Scholar
23. Glowinski, R. 1984 Numerical Methods for Nonlinear Variational Problems. Springer.CrossRefGoogle Scholar
24. Hewitt, I. J. 2011 Modelling distributed and channelized subglacial drainage: the spacing of channels. J. Glaciol. 57 (202), 302314.CrossRefGoogle Scholar
25. Hewitt, I. J. & Fowler, A. C. 2008 Seasonal waves on glaciers. Hydrol. Process. 22, 39193930.CrossRefGoogle Scholar
26. Hewitt, I. J., Schoof, C. & Werder, M. A. 2012 Flotation and free surface flow in a model for subglacial drainage. Part 2. Channel flow. J. Fluid Mech. 702, 157187.CrossRefGoogle Scholar
27. Howat, I. M., Tulaczyk, S., Waddington, E. & Björnsson, H. 2008 Dynamic controls on glacier basal motion inferred from surface ice motion. J. Geophys. Res. 113 (F03015), doi:10.1029/2007JF000925.CrossRefGoogle Scholar
28. Howison, S. D. 1992 Complex variable methods in Hele-Shaw moving boundary problems. Eur. J. Appl. Maths 3, 209224.Google Scholar
29. Hubbard, B., Sharp, M. J., Willis, I. C., Nielsen, M. K. & Smart, C. C. 1995 Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d’Arolla, Valais, Switzerland. J. Glaciol. 41 (139), 572583.CrossRefGoogle Scholar
30. Iken, A. & Bindschadler, R. A. 1986 Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol. 32 (110), 101119.CrossRefGoogle Scholar
31. Iverson, N. R., Baker, R. W., Hooke, R. LeB., Hanson, B. & Jansson, P. 1999 Coupling between a glacier and a soft bed: I. A relation between effective pressure and local shear stress determined from till elasticity. J. Glaciol. 45 (149), 3140.CrossRefGoogle Scholar
32. Jansson, P. 1995 Water pressure and basal sliding on Storglaciären, northern Sweden. J. Glaciol. 41 (138), 232240.CrossRefGoogle Scholar
33. Kamb, B. 1987 Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92 (B9), 90839100.CrossRefGoogle Scholar
34. Kamb, B., Raymond, C. F., Harrison, W. D., Engelhardt, H., Echelmeyer, K. A., Humphrey, N., Brugman, M. M. & Pfeffer, T. 1985 Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science 227 (4686), 469479.CrossRefGoogle ScholarPubMed
35. Kikuchi, N. & Oden, J. T. 1988 Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM.CrossRefGoogle Scholar
36. Kinderlehrer, D. & Stampacchia, G. 1980 An Introduction to Variational Inequalities and their Applications. Academic.Google Scholar
37. Lappegard, G., Kohler, J., Jackson, M. & Hagen, J. O. 2006 Characteristics of subglacial drainage system deduced from load-cell measurements. J Glaciol. 52 (176), 137147.CrossRefGoogle Scholar
38. Lliboutry, L. 1968 General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol. 7 (49), 2158.CrossRefGoogle Scholar
39. MacAyeal, D. R. 1993 Binge/purge oscillations of the Laurentide ice sheet as a cause of North Atlantic Heinrich events. Paleoceanography 8 (6), 775784.CrossRefGoogle Scholar
40. Nye, J. F. 1951 The flow of glaciers and ice-sheets as a problem in plasticity. Proc. R. Soc. Lond. A 207 (1091), 554572.Google Scholar
41. Nye, J. F. 1976 Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol. 17 (76), 181207.CrossRefGoogle Scholar
42. Ockendon, J. R., Howison, S. D. & Lacey, A. A. 2003 Mushy regions in negative squeeze films. Q. J. Mech. Appl. Maths 56 (3), 361379.CrossRefGoogle Scholar
43. Paterson, W. S. B. 1994 The Physics of Glaciers, 3rd edn. Pergamon.Google Scholar
44. Pimentel, S. & Flowers, G. E. 2010 A numerical study of hydrologically driven glacier dynamics and subglacial flooding. Proc. R. Soc. Lond. A 467 (2126), 537558.Google Scholar
45. Röthlisberger, H. 1972 Water pressure in intra- and subglacial channels. J. Glaciol. 11 (62), 177203.CrossRefGoogle Scholar
46. Schoof, C. 2005 The effect of cavitation on glacier sliding. Proc. R. Soc. Lond. A 461, 609627.Google Scholar
47. Schoof, C. 2007a Cavitation on deformable glacier beds. SIAM J. Appl. Maths 67 (6), 16331653.CrossRefGoogle Scholar
48. Schoof, C. 2007b Pressure-dependent viscosity and interfacial instability in coupled ice-sediment flow. J. Fluid Mech. 570, 227252.CrossRefGoogle Scholar
49. Schoof, C. 2010 Ice-sheet acceleration driven by melt supply variability. Nature 468, 803806.CrossRefGoogle ScholarPubMed
50. Schuler, T. V. & Fischer, U. H. 2009 Modeling the dirunal variation of tracer transit velocity through a subglacial channel. J. Geophys. Res. 114, F04017.CrossRefGoogle Scholar
51. Shepherd, A., Hubbard, A., Nienow, P., King, M., MacMillan, M. & Joughin, I. 2009 Greenland ice sheet motion coupled with daily melting in late summer. Geophys. Res. Lett. 36 (L01501), doi:10.1029/2008GL035785.CrossRefGoogle Scholar
52. Tsai, V. C. & Rice, J. R. 2010 A model for turbulent hydraulic fracture and application to crack propagation at glacier beds. J. Geophys. Res. 115 (F03007), doi:10.1029/2009JF001474.CrossRefGoogle Scholar
53. van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P., Reijmer, C. H., Donker, J. J. A. & Oerlemans, J. 2008 Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science 321, 111113.CrossRefGoogle ScholarPubMed
54. Walder, J. S. 1982 Stability of sheet flow of water beneath temperate glaciers and implications for glacier surging. J. Glaciol. 28 (99), 273293.CrossRefGoogle Scholar
55. Walder, J. 1986 Hydraulics of subglacial cavities. J. Glaciol. 32 (112), 439445.CrossRefGoogle Scholar