Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T22:33:36.220Z Has data issue: false hasContentIssue false

Flame-acoustic resonance initiated by vortical disturbances

Published online by Cambridge University Press:  26 August 2009

XUESONG WU*
Affiliation:
Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
CHUNG K. LAW
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

By adapting the general flame-acoustic interaction theory developed in Wu et al. (J. Fluid Mech., vol. 497, 2003, pp. 23–53), a systematic analysis is carried out for the interaction of a stable premixed flame in a duct with vortical disturbances superimposed on the oncoming mixture. A small-amplitude vortical perturbation, assumed to be a convecting gust with a frequency ω, induces a hydrodynamic field in the vicinity of the flame, causing an initially planar flame to wrinkle. The unsteady heat release resulting from the increased surface area of the wrinkling flame then generates a sound wave with frequency 2ω. When 2ω coincides with the natural frequency of an acoustic mode of the duct, a flame-acoustic resonance takes place, through which the flame-induced sound may attain an amplitude sufficiently large to modulate the flame through the unsteady Rayleigh–Taylor effect. A novel evolution system is derived to describe this two-way coupling for two cases: (a) a flame with a fixed mean position and (b) a moving flame. Numerical solutions show that for (a), the mutual flame-acoustic interaction initiates a violent subharmonic parametric instability, and the flame-acoustic system quickly evolves into a fully nonlinear regime, which probably corresponds to a state of self-sustained oscillation. This finding presents a peculiar instability scenario: a small-amplitude vortical perturbation may, by initiating acoustic-flame resonance, completely destabilize an otherwise stable planar flame. For a moving flame, the flame-acoustic resonance is of transient nature. The acoustic pressure gains substantially, but the parametric flame instability is induced only when the vortical disturbance exceeds a finite threshold.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldredge, R. C. 1996 Premixed flame propagation in a high-intensity, large scale vortical flow. Combust. Flame 106, 2940.CrossRefGoogle Scholar
Aldredge, R. C. & Williams, F. A. 1991 Influence of wrinkled premixed-flame dynamics on large scale, low-intensity turbulent flow. J. Fluid Mech. 228, 487511.Google Scholar
Baillot, F., Durox, D. & Prud'homme, R. 1992 Experimental and theoretical study of a premixed vibrating flame. Combust. Flame, 88 (2), 149168.CrossRefGoogle Scholar
Birbaud, A. L., Durox, D. & Candel, S. 2006 Upstream flow dynamics of a laminar premixed conical flame subjected to acoustic modulations. Combust. Flame 146, 541552.Google Scholar
Bychkov, V. 1999 Analytical scalings for flame interaction with sound waves. Phys. Fluids, 11 (10), 31683173.CrossRefGoogle Scholar
Cambray, P. & Joulin, G. 1994 Length-scales of wrinkling of weakly forced unstable premixed flames. Combust. Sci. Technol. 97, 405428.Google Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.CrossRefGoogle Scholar
Clavin, P. 1985 Dynamics behaviour of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combus. Sci. 11, 159.Google Scholar
Clavin, P. 1994 Premixed combustion and gasdynamics. Annu. Rev. Fluid Mech. 26, 321352.CrossRefGoogle Scholar
Clavin, P., Pelce, P. & He, L. 1990 One-dimensional vibratory instability of planar flames propagating in tubes. J. Fluid Mech. 216, 299322.CrossRefGoogle Scholar
Clavin, P. & Williams, F. A. 1982 Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251282.CrossRefGoogle Scholar
Craik, A. D. D. 1985 Wave Interactions and Fluid Fluids. Cambridge University Press.Google Scholar
D'Angelo, Y., Joulin, G. & Boury, G. 2000 On model evolution equations for the whole surface of three-dimensional expanding wrinkled premixed flames. Combust. Theory Modelling 4 (3), 317338.CrossRefGoogle Scholar
Dowling, A. P. 1999 A kinematic model of a ducted flame. J. Fluid Mech. 394, 5172.CrossRefGoogle Scholar
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37, 151182.CrossRefGoogle Scholar
Ducruix, S., Durox, D. & Candel, S. 2000 Theoretical and experimental determination of the transfer function of laminar premixed flame. Proc. Combust. Inst. 28, 765773.CrossRefGoogle Scholar
Ducruix, S., Schuller, T., Durox, D. & Candel, S. 2003 Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J. Propul. Power 19 (5), 722734.Google Scholar
Fleifil, M., Annaswamy, A. M., Ghoneim, Z. A. & Ghoniem, A. F. 1996 Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106, 487510.Google Scholar
Harten, A. V., Kapila, A. K. & Matkowsky, B. J. 1984 Acoustic coupling of flames. SIAM J. Appl. Math. 44, 982995.CrossRefGoogle Scholar
Joulin, G. & Cambray, P. 1992 On a tentative, approximate evolution equation for markedly wrinkled premixed flames. Combust. Sci. Technol. 81, 243256.Google Scholar
Keller, D. & Peters, N. 1994 Transient pressure effects in the evolution equation for premixed flame fronts. Theoret. Comput. Fluid Dyn. 6, 141159.CrossRefGoogle Scholar
Lieuwen, T. 2003 Modeling premixed combustion-acoustic wave interactions: a review. J. Propul. Power 19 (5), 765781.CrossRefGoogle Scholar
Lieuwen, T. 2005 Nonlinear kinematic response of premixed flames to harmonic velocity disturbances. Proc. Combust. Inst. 30, 17251732.CrossRefGoogle Scholar
Markstein, G. H. 1953 Instability phenomena in combustion waves. Proc. Combust. Inst. 4, 4459.CrossRefGoogle Scholar
Markstein, G. H. & Squire, W. 1955 On the stability of a plane flame front in oscillatory flow. J. Am. Acoust. Soc. 27 (3), 416424.CrossRefGoogle Scholar
Matalon, M. 2007 Intrinsic flame instability in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163191.Google Scholar
Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.Google Scholar
Matkowsky, B. J. & Sivashinsky, G. I. 1979 An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Math. 37, 686699.CrossRefGoogle Scholar
McIntosh, A. C. 1991 Pressure disturbances of different length scales interacting with conventional flames. Combust. Sci. Technol. 75, 287309.Google Scholar
McIntosh, A. C. 1993 The linearized response of the mass burning rate of a premixed flame to rapid pressure changes. Combust. Sci. Technol. 91, 3329–346.Google Scholar
McIntosh, A. C. & Wilce, S. A. 1991 High frequency pressure wave interaction with premixed flames. Combust. Sci. Technol. 79, 141155.CrossRefGoogle Scholar
Pelce, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.CrossRefGoogle Scholar
Pelce, P. & Rochwerger, 1992 Vibratory instability of cellular flames propagating in tubes. J. Fluid Mech. 239, 293307.CrossRefGoogle Scholar
Petchenko, A., Bychkov, V., Akkerman, & Eriksson, L. 2006 Violent folding of a flame front in a flame-acoustic resonance. Phy. Rev. Lett. 97 (16), 164501-1–164501-4.CrossRefGoogle Scholar
Peters, N. & Ludford, G. S. S. 1984 The effect of pressure variations on premixed flames. Combust. Sci. Technol. 34, 331344.CrossRefGoogle Scholar
Poinsot, T. J., Trouve, A. C., Veynante, D. P., Candel, S. M. & Esposito, E. J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.CrossRefGoogle Scholar
Schuller, T. D., Ducruix, S., Durox, D. & Candel, S. 2002 Modeling tools for the prediction of premixed flame transfer functions. Proc. Combust. Inst. 29, 107113.CrossRefGoogle Scholar
Schuller, T. D., Durox, D. & Candel, S. 2003 A unified model for the prediction of flame transfer functions comparisons between conic and V-flame dynamics. Combust. Flame 134, 2134.CrossRefGoogle Scholar
Searby, G. 1992 Acoustic instability in premixed flames. Combust. Sci. Technol. 81, 221231.CrossRefGoogle Scholar
Searby, G. & Clavin, P. 1986 Weakly turbulent, wrinkled flames in premixed gases. Combust. Sci. Technol. 46, 167193.Google Scholar
Searby, G. & Rochwerger, D. 1991 A parametric acoustic instability in premixed flames. J. Fluid Mech. 231, 529543.Google Scholar
Stuart, J. T. 1960 On the nonlinear mechanisms of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poisuille flow. J. Fluid Mech. 9, 353370.CrossRefGoogle Scholar
Yu, K. H., Trouve, A. & Daily, J. W. 1991 Low-frequency pressure oscillations in a model ramjet combustor. J. Fluid Mech. 232, 4772.CrossRefGoogle Scholar
Wu, X., Wang, M., Moin, P. & Peters, N. 2003 Combustion instability due to nonlinear acoustic-flame interaction. J. Fluid Mech. 497, 2353.CrossRefGoogle Scholar
Zhu, J. & Ronney, P. D. 1994 Simulation of front propagation at large non-dimensional flow disturbance intensity. Combust. Sci. Technol. 100, 183201.Google Scholar
Zaytsev, M. & Bychkov, V. 2002 Effect of Darrieus–Landau instability on turbulent flame velocity. Phys. Rev. E 66, 026310026312.CrossRefGoogle ScholarPubMed