Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T17:30:19.309Z Has data issue: false hasContentIssue false

Finite-size effects in parametric subharmonic instability

Published online by Cambridge University Press:  28 October 2014

Baptiste Bourget
Affiliation:
Laboratoire de Physique de l’École Normale Supérieure de Lyon, Université de Lyon, CNRS, 46 Allée d’Italie, F-69364 Lyon CEDEX 07, France
Hélène Scolan
Affiliation:
Laboratoire de Physique de l’École Normale Supérieure de Lyon, Université de Lyon, CNRS, 46 Allée d’Italie, F-69364 Lyon CEDEX 07, France
Thierry Dauxois
Affiliation:
Laboratoire de Physique de l’École Normale Supérieure de Lyon, Université de Lyon, CNRS, 46 Allée d’Italie, F-69364 Lyon CEDEX 07, France
Michael Le Bars
Affiliation:
CNRS, Aix-Marseille Université, Ecole Centrale Marseille, IRPHE UMR 7342, 49 rue F. Joliot-Curie, 13013 Marseille, France
Philippe Odier
Affiliation:
Laboratoire de Physique de l’École Normale Supérieure de Lyon, Université de Lyon, CNRS, 46 Allée d’Italie, F-69364 Lyon CEDEX 07, France
Sylvain Joubaud*
Affiliation:
Laboratoire de Physique de l’École Normale Supérieure de Lyon, Université de Lyon, CNRS, 46 Allée d’Italie, F-69364 Lyon CEDEX 07, France
*
Email address for correspondence: [email protected]

Abstract

The parametric subharmonic instability (PSI) in stratified fluids depends on the frequency and the amplitude of the primary plane wave. In this paper, we present experimental and numerical results emphasizing that the finite width of the beam also plays an important role on this triadic instability. A new theoretical approach based on a simple energy balance is developed and compared with numerical and experimental results. Owing to the finite width of the primary wave beam, the secondary pair of waves can leave the interaction zone which affects the transfer of energy. Experimental and numerical results are in good agreement with the prediction of this theory, which brings new insights on energy transfers in the ocean where internal waves with finite-width beams are dominant.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benielli, D. & Sommeria, J. 1998 Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech. 374, 117144.Google Scholar
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.CrossRefGoogle Scholar
Caillol, P. & Zeitlin, V. 2000 Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves. Dyn. Atmos. Oceans 32 (2), 81112.Google Scholar
Clark, H. A. & Sutherland, B. R. 2010 Generation, propagation and breaking of an internal wave beam. Phys. Fluids 22, 076601.Google Scholar
Dalziel, S. B., Hughes, G. O. & Sutherland, B. R. 2000 Whole-field density measurements by ‘synthetic schlieren’. Exp. Fluids 28 (4), 322335.Google Scholar
Dewan, E. M., Picard, R. H., O’Neil, R. R., Gardiner, H. A., Gibson, J., Mill, J. D., Richards, E., Kendra, M. & Gallery, W. O. 1998 MSX satellite-observations of thunderstorm-generated gravity-waves in mid-wave infrared images of the upper-stratosphere. Geophys. Res. Lett. 25, 939942.Google Scholar
Gayen, B. & Sarkar, S. 2013 Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline. J. Geophys. Res. 118 (9), 46894698.Google Scholar
Gerkema, T., Staquet, C. & Bouruet-Aubertot, P. 2006 Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett. 33, L08604.Google Scholar
Gill, A. E. 1982 Atmosphere–Ocean Dynamics, vol. 30. Academic Press.Google Scholar
Gostiaux, L. & Dauxois, T. 2007 Laboratory experiments on the generation of internal tidal beams over steep slopes. Phys. Fluids 19, 028102.Google Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp. Fluids 42 (1), 123130.Google Scholar
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E. & Woodward, C. S. 2005 SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363396.Google Scholar
Karimi, H. H. & Akylas, T. R. 2014 Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains. J. Fluid Mech. 757, 381402.Google Scholar
Koudella, C. R. & Staquet, C. 2006 Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech. 548, 165196.Google Scholar
Lien, R. C. & Gregg, M. C. 2001 Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res. 106, 45754591.Google Scholar
Lvov, Y. V., Polzin, K. L., Tabak, E. G. & Yokoyama, N. 2010 Oceanic internal-wavefield: theory of scale-invariant spectra. J. Phys. Oceanogr. 40, 26052623.Google Scholar
Lvov, Y. V., Polzin, K. L. & Yokoyama, N. 2012 Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr. 40, 669691.Google Scholar
McEwan, A. D. & Plumb, R. A. 1977 Off-resonant amplification of finite internal wave packets. Dyn. Atmos. Oceans 2 (1), 83105.Google Scholar
McKinnon, J. A., Alford, M. H., Sun, O., Pinkel, R., Zhao, Z. & Klymak, J. 2012 Parametric subharmonic instability of the internal tide at $29^{\circ }\text{N}$ . Am. Meteorol. Soc. 43 (1), 1728.Google Scholar
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids 20 (8), 086601.Google Scholar
Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New wave generation. J. Fluid Mech. 657, 308334.Google Scholar
Sun, O. & Pinkel, R. 2013 Subharmonic energy transfer from the semi-diurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaï. J. Phys. Oceanogr. 43, 766789.Google Scholar
Sutherland, B. R. 2013 The wave instability pathway to turbulence. J. Fluid Mech. 724, 14.Google Scholar
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measurement of internal waves by ’synthetic schlieren’. Part I. Vertically oscillating cylinder. J. Fluid Mech. 390, 93126.CrossRefGoogle Scholar