Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T22:12:15.750Z Has data issue: false hasContentIssue false

Finite-amplitude and diffusive effects in acoustics: a report on EUROMECH 23

Published online by Cambridge University Press:  29 March 2006

N. Rott
Affiliation:
Swiss Federal Institute of Technology, Zurich, Switzerland
H. Thomann
Affiliation:
Swiss Federal Institute of Technology, Zurich, Switzerland

Abstract

The 23rd EUROMECH colloquium on finite-amplitude and diffusive effects in acoustics was held in Rapperswil (Switzerland), 5–7 April 1971. There were 41 participants from 7 countries, and the authors were the chairmen of the meeting organization. References quoted in this report give the titles of the talks and sources for further details of the work described at the meeting; there will be no other publication of the proceedings. The subject matter of this meeting was more strongly restricted than is indicated by its title, inasmuch as papers motivated solely by sonic-boom research problems were not included. Included in particular were problems of acoustic damping by relaxation, dust, moisture, etc.; damping in ducts; effects of turbulence; acoustic streaming; and thermo-acoustic effects.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, C. & Ronneberger, D. Luftschalldämpfung in turbulent durchströmten Rohren mit glatten und rauhen Wänden (to be published in Acustica).
Becker, E. Einfluss der akustischen Dämpfung auf die Entstehung von Unstetigkeiten in fortlaugenden Wellen.
Becker, E. & Schmitt, H. 1968 Die Entstehung von ebenen, zylinderund kugel-symmetrischen Verdichtungsstössen in relaxierenden Gasen. Ing. Archiv, 36, 335.Google Scholar
Becker, E. 1970 Die Entstehung von Verdichtungsstössen in kompressiblen Medien. Ing. Arch., 39, 302.Google Scholar
Becker, E. 1970 Relaxation effects in gas dynamics. Aeron. J. Roy. Aero. Soc. J. 74, 736.Google Scholar
Bertelsen, A. & Tjøtta, S. Non-linear streaming effects associated with oscillating cylinders.
Brillouin, L. 1956 Les pressions de radiation et leur aspect tensoriel. Journal de Physique, 17, 379.Google Scholar
Brocher, E. & Maresca, CH. Fluid dynamics of the resonance tube.
Brocher, E. & Maresca, CH. Thermal effects in resonance tubes.
Brocher, E. & Maresca, CH. 1971 J. Fluid Mech. 43, 369.
Brocher, E. & Maresca, CH. 1970 Comptes Rendues, 271, 737.
Chasseriaux, J. Ondes stationnaires unidimensionelles d'amplitude finie dans un fluide parfait (to be published in J. Sound Vib.).
Dean, P. D. & Tester, B. J. The acoustic impedance of resonant-cavity duct liners in the presence of parallel mean flow.
Doak, P. E. The nature of the interdependence amongst acoustic tubulent and thermal fluctuations in unsteady fluid flows (to be published in J. Sound Vib.).
Ffowcs Williams, J. E. The interaction of waves and turbulence with a perforated solid boundary.
Ffowcs Williams, J. E. The acoustics of turbulence near sound absorbent liners (to be published).
Fiszdon, W. & Grzedzinski, J. The influence of gas-oscillating surface interaction model on distribution of pressure impulse in free-molecular hyperthermal flow (to be published in Arch. Mech. P. W.N., Warsaw).
Harel, P. & Perulli, M. Theoretical study of the space-time structure of acoustic waves in a duct.
Harel, P. & Perulli, M. 1971 The influence of a stationary uniform axial flow on the propagation of acoustic modes of vibration in a cylindrical duct. J. Sound Vib., 14, 4.See also TPP, ONERA no. 844.Google Scholar
Heckl, M. Dämpfung von Biegewellen durch die Viskosität des umgebenden Mediums (to be published in Acustica).
Hiller, W. J., Jaeschke, M. & Meier, G. E. A. Einfluss der Luftfeuchtigkeit auf schwache Stosswellen in transsonischen Freistrahlen. (GAMM Sonderheft Z.A.M.M. 1970)
Hodgson, J. P. & Johannesen, N. H. Real-gas effects in very weak shock waves in the atmosphere and the structure of sonic bangs (to be published).
Jessel, M. Tensions de radiation et acoustique non lineaire.
Kramers, H. A. 1949 Vibrations of a gas column. Physica, 15, 971.Google Scholar
Lighthill, M. J. 1956 Viscosity effects in sound waves of finite amplitude. In Surveys in Mechanics (Cambridge University Press).Google Scholar
Merkli, P. Versuche mit Resonanzrohren kleiner Amplitude.
Monkewitz, P. Decay of an acoustic wave system in a cylindrical tube.
Mungur, P. Sound transmission in subsonic shear flow.
Mungur, P. & Gladwell, G. N. L. 1969 Acoustic wave propagation in a sheared fluid. J. Sound Vib., 9, 28.Google Scholar
Mungur, P. & Plumblee, H. E. 1969 Sound propagation in a soft-walled annular duct with shear flow. NASA Basic Noise Research Symposium, Washington.Google Scholar
Peube, J. L. Propagation des ondes dans une conduite cylindrique de section quelconque.
Peube, J. L. Wave propagation in a quasi-cylindrical duct with an arbitrary variable cross-section (to be published).
Peube, J. L. & Arnaud, G. 1969 Comptes Rendues, 268, 1134.
Riley, N. Stirring of a viscous fluid (to be published in Z.A.M.P.).
Ronneberger, D. Berechnung der Luftschalldämpfung in luftdurchströmten, harten Rohren (to be published in Acustica).
Rott, N. Thermally driven acoustic oscillations.
Rott, N. 1969 Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z.A.M.P. 20, 230.Google Scholar
Schaaffs, W. Ueber die Einfrierung des Amplitudengitters einer in einer Diffusionsstrecke erzeugten Ultraschallwelle.
Schaaffs, W. & Haun, L. 1968 Einfrierung stehender Ultraschallwellen mit Hilfe des Konzentrationseffekts. Acustica, 20, 348.Google Scholar
Schaaffs, W. 1968 Kolloid-zeitschrift & Z. Polymere, 227, 131.
Schaaffs, W. & Haun, L. 1970 Z. Angew. Phys. 28, 373.
Schmitt, H. Formänderung von fortlaufendan Wellen durch thermo-dynamische Relaxation.
Schmitt, H. 1968 Fortpflanzung schwacher Unstetigkeiten bei nichtlinearen Wellenausbreitungsvorgängen. Z.A.M.M., 48, 241.Google Scholar
Schmitt-Von Schubert, B. Schallwellen in Gasen mit festen Teilchen.
Schmitt-Von Schubert, B. 1969 Schallwellen in Gasen mit festen Teilchen. Z.A.M.P., 20, 922.Google Scholar
Schmitt-Von Schubert, B. 1969 Existence and uniqueness of normal shock waves in gas-particle mixtures. J. Fluid Mech., 38, 633.Google Scholar
Schmitt-Von Schubert, B. 1970 Struktur stationärer Verdichtungsstösse in Gasen mit Z.A.M.M. 50, 671.
Sprenger, H. Demonstration von Resonanzrohren.
Sprenger, H. 1954 Ueber thermische Effekte in Resonanzrohren. Mitt. Inst. Aerodyn. ETH Zürich no. 21.Google Scholar
Svardal, A. 1965 On acoustical streaming between two coaxial cylinders. Dept. of Appl. Math. Rep. no. 7, Univ. of Bergan.Google Scholar
Tester, B. J. & Dean, P. D. 1971 Inst. Sound Vib. Res., Memo no. 420.
Whitehead, D. S. Contribution to discussion on resonance tubes and thermal oscillations.