Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T14:09:09.036Z Has data issue: false hasContentIssue false

Finite amplitude convective cells and continental drift

Published online by Cambridge University Press:  28 March 2006

D. L. Turcotte
Affiliation:
Department of Engineering Science, University of Oxford
E. R. Oxburgh
Affiliation:
Department of Geology, University of Oxford

Abstract

A solution is obtained for steady, cellular convection when the Rayleigh number and the Prandtl number are large. The core of each two-dimensional cell contains a highly viscous, isothermal flow. Adjacent to the horizontal boundaries are thin thermal boundary layers. On the vertical boundaries between cells thin thermal plumes drive the viscous flow. The non-dimensional velocities and heat transfer between the horizontal boundaries are found to be functions only of the Rayleigh number. The theory is used to test the hypothesis of large scale convective cells in the earth's mantle. Using accepted values of the Rayleigh number for the earth's mantle the theory predicts the generally accepted velocity associated with continental drift. The theory also predicts values for the heat flux to the earth's surface which are in good agreement with measurements carried out on the ocean floors.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. R. 1965 Phil. Trans. A 258, 829.
Batchelor, G. K. 1954 Quart. Appl. Math. 12, 20633.
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids (2nd edition). Oxford University Press.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Clark, S. P. & Ringwood, A. E. 1964 Rev. Geophys. 2, 3588.
Fromm, J. E. 1965 Phys. Fluids 8, 175769.
Girdler, R. W. 1965 Phil. Trans. A 258, 12336.
Jaeger, J. C. 1965 Terrestrial Heat Flow, pp. 723. Washington: American Geophysical Union.
Jeffreys, H. 1928 Proc. Roy. Soc. 118, 195208.
Jeffreys, H. 1930 Proc. Camb. Phil. Soc. 26, 1702.
Knopoff, L. 1964 Rev. Geophys. 2, 89120.
Kuo, H. L. 1961 J. Fluid Mech. 10, 61134.
Lee, W. H. K. & Uyeda, S. 1965 Terrestrial Heat Flow, pp. 87190. Washington: American Geophysical Union.
Malkus, W. V. R. & Veronis, G. 1958 J. Fluid Mech. 4, 22560.
Mcconnell, R. K. 1965 J. Geophys. Res. 70, 517188.
Mcdonald, G. J. 1965 Terrestrial Heat Flow, pp. 191210. Washington: American Geophysical Union.
Orowan, E. 1965 Phil. Trans A 258, 284313.
Platzman, G. W. 1965 J. Fluid Mech. 23, 481510.
Rayleigh, Lord 1916 Phil. Mag. 32, 52946.
Silveston, P. L. 1958 Forsch. Ing.-Wes. 24, 2932, 5969.
Tozer, D. C. 1965 Phil. Trans. A 258, 25271.
Verhoogen, J. 1958 Phys. Chem. Earth 1, 1743.
Weinbaum, S. 1964 J. Fluid Mech. 18, 40937.
Wilson, J. T. 1965 Phil. Trans. A 258, 14567.