Published online by Cambridge University Press: 24 January 2012
Salt fingers are a form of double-diffusive convection that can occur in a wide variety of fluid systems, ranging from stellar interiors and oceans to magma chambers. Their amplitude has long been difficult to quantify, and a variety of mechanisms have been proposed. Radko & Smith (J. Fluid Mech., this issue, vol. 692, 2012, pp. 5–27) have developed a new theory that balances the basic growth rate with that of secondary instabilities that act on the finite amplitude fingers. Their approach promises a way forward for computationally challenging systems with vastly different scales of decay for momentum, heat and dissolved substances.