Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T03:35:00.003Z Has data issue: false hasContentIssue false

Fine-scale turbulence structure of intermittent hear flows

Published online by Cambridge University Press:  26 April 2006

V. R. Kuznetsov
Affiliation:
Central Institute of Aviation Motors, 2, Aviamotornaya. Moscow. 111250. Russia
A. A. Praskovsky
Affiliation:
Central Aero-Hydrodynamical Institute, Zhukovsky-3, Moscow region. 140160. Russia
V. A. Sabelnikov
Affiliation:
Central Aero-Hydrodynamical Institute, Zhukovsky-3, Moscow region. 140160. Russia

Abstract

An experimental investigation of the fine-scale structure of turbulence was carried out. Five different shear flows were studied: three in a wind tunnel with an open working section and an elliptical nozzle and two in a wind tunnel of closed working section and square cross-section. The experiments tested two approaches to the theory of fine-scale turbulence structure: one based on the Navier-Stokes equations and the other on some similarity hypotheses. The variability of all fine-scale constants (including exponents in inertial-subrange power laws and the Kolmogorov constant) is revealed. A correlation between all fine-scale constants and the external intermittency coefficient is established.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselmet, F., Gagne, Y., Hopfinger, E. J. & Antonia, R. A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 6389.Google Scholar
Antonia, R. A. 1981 Conditional sampling in turbulence measurements. Ann. Rev. Fluid Mech. 13, 131151.Google Scholar
Antonia, R. A., Browne, L. W. B. & Shah, D. A. 1988 Characteristics of vorticity fluctuations in a turbulent wake. J. Fluid Mech. 189, 349365.Google Scholar
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1982 Statistics of fine-scale velocity in turbulent plane and circular jets. J. Fluid Mech. 119, 5589.Google Scholar
Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E. J. & Frisch, U. 1989 Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade. Nature 338, 5153.Google Scholar
Bacry, E., Arneodo, A., Frisch, U., Gagne, Y. & Hopfinger, E. J. 1989 Wavelet analysis of fully developed turbulence data and measurements of scaling exponents. In Turbulence and Coherent Structures (ed. M. Lesieur & O. Métais). Kluwer.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Browne, L. W. B., Antonia, R. A. & Shah, D. A. 1987 Turbulent energy dissipation in a wake. J. Fluid Mech. 179, 307326.Google Scholar
Champagne, F. H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67108.Google Scholar
Champagne, F. H., Pao, Y. H. & Wygnanski, I. J. 1976 On the two-dimensional mixing region. J. Fluid Mech. 74, 209250.Google Scholar
Chhabra, A. B., Meneveau, C., Jensen, R. V. & Sreenivasan, K. R. 1989 Direct determination of the. f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 40, 52845924.Google Scholar
Foss, J. F. & Wallace, J. M. 1989 The measurements of vorticity in transitional and fully developed turbulent flows. In Advances in Fluid Mechanics Measurements (ed. M. Gad-el-Hak). Lecture Notes in Engineering, vol. 45. Springer.
Frisch, U., Sulem, Ph. L. & Nelkin, M. 1978 A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719737.Google Scholar
Gagne, Y. & Hopfinger, E. J. 1979 High order dissipation correlations and structure functions in an axisymmetric jet and plane channel flow In Proc. 2nd Symp. Turbulent Shear Flows, Imperial College, London.
Hedley, T. B. & Keffer, J. F. 1974 Turbulent/non-turbulent decisions in an intermittent flow. J. Fluid Mech. 64, 625644.Google Scholar
Heskestad, G. 1965 A generalized Taylor hypothesis with application for high Reynolds number turbulent shear flow. Trans. ASME E: J. Appl. Mech. 32, 735739.Google Scholar
Jenkins, P. E. & Goldschmidt, W. W. 1976 Conditional (point averaged) temperature and velocity in heated plane jet. Phys. Fluids 19, 613617.Google Scholar
Kolmogorov, A. N. 1941 Turbulence fine-scale structure in a viscous incompressible fluid at very high Reynolds number. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.Google Scholar
Kuznetsov, V. R. 1967 Two-point PDF of velocity difference in homogeneous isotropic turbulence. Prikl. Mat. Mekh. 31, 10691072.Google Scholar
Kuznetsov, V. R. 1972 A PDF of passive scalar concentration in turbulent shear flows. Izv. Akad. Nauk SSSR Mech. Zhid. Gaza 6, 8589.Google Scholar
Kuznetsov, V. R. 1976 PDF of velocity in an inertial subrange of turbulence spectrum. Izv. Akad. Nauk SSSR Mech. Zhid. Gaza 2, 3241.Google Scholar
Kuznetsov, V. R., Praskovsky, A. A. & Sabelnikov, V. A. 1984 Experimental investigation of intermittency and turbulence fine-scale structure in turbulent shear flows In Structure of Gaseous Flames, Part 2, pp. 2138. Novosibirsk, ITPM SO AN SSSR.
Kuznetsov, V. R., Praskovsky, A. A. & Sabelnikov V, A. 1988 Turbulence fine-scale structure in strongly intermittent shear flows. Izv. Akad. Nauk SSSR Mech. Zhid. Gaza 6, 5159.Google Scholar
Kuznetsov, V. R. & Rasschupkin, V. I. 1977 PDF and conditional sampling in turbulent flows. Izv. Akad. Nauk SSSR Mech. Zhid. Gaza 6, 3137.Google Scholar
Kuznetsov, V. R. & Sabelnikov, V. A. 1986 Turbulence and Combustion. Moscow: Nauka. (English Transl. Hemisphere. 1990).
Larue, J. C. & Libby, P. A. 1976 Statistical properties of the interface in the turbulent wake of a heated cylinder. Phys. Fluids 19, 18641875.Google Scholar
Lumley, J. L. 1965 Interpretation of time spectra measured in high intensity shear flows. Phys. Fluids 8, 10561062.Google Scholar
Monin, A. S. & Yaglom, A. M. 1967 Statistical Fluid Mechanics. vol. 2. Moscow: Nauka. (English Transl. MIT Press, 1975).
Novikov, E. A. 1971 Intermittency and scaling in turbulent flows. Prikl. Mat. Mekh. 35, 266277.Google Scholar
Novikov, E. A. & Stewart, R. W. 1964 Intermittency and dissipation fluctuation spectrum. Izv. Akad. Nauk SSSr Geogr. Geofiz. 3, 408413.Google Scholar
Oboukhov, A. M. 1941 Spectrum of energy of turbulent flow. Dokl. Akad. Nauk. SSSR 32, 2224.Google Scholar
Oboukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 1, 7781.Google Scholar
Parisi, G. & Frisch, U. 1985 On the singularity structure of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (ed. M. Ghil, R. Benzi & Parisi G.). pp. 8487. North-Holland.
Phillips, O. M. 1955 The irrotational motion outside a free turbulent boundary. Proc. Camb. Phil. Soc. 51, 220229.Google Scholar
Pond, S. & Stewart, R. W. 1965 Measurements of characteristics of turbulence finescale structure. Izv. Akad. Nauk SSSr Fiz. Atmos. Oceana 1, 914919.Google Scholar
Praskovsky, A. A. 1982 Intermittency function measurements In Papers of the Third All-Union Conf. on Methods of Aerophysical Investigations, Part 2, pp. 133136. Novosibirsk. ITPM.
Praskovsky, A. A. 1983 Measurements of conditionally averaged turbulence characteristics in a plane wake. Prikl. Mech. Tehn. Fiz. 6, 8794.Google Scholar
Siebesma, A. P., Tremblay, R. R., Erzan, A. & Pietronero, Z. 1989 Multifractal cascades with interactions.. Physica A 156, 613627.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Tsinober, A., Kit, E. & Dracos, T. 1992 Experimental investigation of the field of vorticity gradients in turbulent flows. J. Fluid Mech. (in press).Google Scholar
Wyngaard, J. C. 1968 Measurements of small-scale turbulent characteristics with hot-wires. J. Sci. Instrum. 1, 11051108.Google Scholar
Yaglom, A. M. 1966 Dependence of inertial-subrange characteristics on dissipation fluctuations. Dokl. Akad. Nauk SSSR 166, 4952.Google Scholar
Yaglom, A. M. 1981 Turbulence fine-scale structure in atmosphere and ocean (Towards the 40th anniversary of the turbulence fine-scale structure theory). Izv. Akad. Nauk SSSR Fis. Atmos. Okeana 17, 12351257.Google Scholar