Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T13:27:19.021Z Has data issue: false hasContentIssue false

Film flow over heated wavy inclined surfaces

Published online by Cambridge University Press:  27 October 2010

S. J. D. D'ALESSIO*
Affiliation:
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1
J. P. PASCAL
Affiliation:
Department of Mathematics, Ryerson University, Toronto, Ontario, CanadaM5B 2K3
H. A. JASMINE
Affiliation:
Department of Mathematics, Ryerson University, Toronto, Ontario, CanadaM5B 2K3
K. A. OGDEN
Affiliation:
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1
*
Email address for correspondence: [email protected]

Abstract

The two-dimensional problem of gravity-driven laminar flow of a thin layer of fluid down a heated wavy inclined surface is discussed. The coupled effect of bottom topography, variable surface tension and heating has been investigated both analytically and numerically. A stability analysis is conducted while nonlinear simulations are used to validate the stability predictions and also to study thermocapillary effects. The governing equations are based on the Navier–Stokes equations for a thin fluid layer with the cross-stream dependence eliminated by means of a weighted residual technique. Comparisons with experimental data and direct numerical simulations have been carried out and the agreement is good. New interesting results regarding the combined role of surface tension and sinusoidal topography on the stability of the flow are presented. The influence of heating and the Marangoni effect are also deduced.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseenko, S., Nakoryakov, V. & Pokusaev, B. 1985 Wave formation on a vertical falling liquid film. AIChE J. 31, 14461460.CrossRefGoogle Scholar
Balmforth, N. J. & Mandre, S. 2004 Dynamics of roll waves. J. Fluid Mech. 514, 133.CrossRefGoogle Scholar
Bénard, H. 1900 Les tourbillons cellulaires dans une mappe liquide. Rev. Gen. Sci. Pures et Appl. 11, 12611271.Google Scholar
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.CrossRefGoogle Scholar
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.CrossRefGoogle Scholar
Brock, R. R. 1969 Development of roll-wave trains in open channels. J. Hydraul. Div. 95 (HY4), 14011427.CrossRefGoogle Scholar
Brook, B. S., Pedley, T. J. & Falle, S. A. 1999 Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. J. Fluid Mech. 396, 223256.CrossRefGoogle Scholar
Chang, H.-C. 1994 Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103136.CrossRefGoogle Scholar
Chang, H.-C., Demekhin, E. A. & Kalaidin, E. 2000 Coherent structures, self-similarity and universal roll wave coarsening dynamics. Phys. Fluids 12, 22682278.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.CrossRefGoogle Scholar
D'Alessio, S. J. D., Pascal, J. P. & Jasmine, H. A. 2009 Instability in gravity-driven flow over uneven surfaces. Phys. Fluids 21, 062105.CrossRefGoogle Scholar
Davalos-Orozco, L. A. 2007 Nonlinear instability of a thin film flowing down a smoothly deformed surface. Phys. Fluids 19, 074103.CrossRefGoogle Scholar
Davalos-Orozco, L. A. 2008 Instabilities of thin films flowing down flat and smoothly deformed walls. Microgravity Sci. Technol. 20, 225229.CrossRefGoogle Scholar
Goussis, D. A. & Kelly, R. E. 1991 Surface wave and thermocapillary instabilities in a liquid film flow. J. Fluid Mech. 223, 2545 and erratum J. Fluid Mech. 226, 663.CrossRefGoogle Scholar
Häcker, T. & Uecker, H. 2009 An integral boundary layer equation for film flow over inclined wavy bottoms. Phys. Fluids 21, 092105.CrossRefGoogle Scholar
Heining, C. & Aksel, N. 2009 Bottom reconstruction in thin-film flow over topography: steady solution and linear stability. Phys. Fluids 21, 083605.CrossRefGoogle Scholar
Heining, C., Bontozoglou, V., Aksel, N. & Wierschem, A. 2009 Nonlinear resonance in viscous films on inclined wavy planes. Intl J. Multiphase Flow 35, 7890.CrossRefGoogle Scholar
Joo, S. W., Davis, S. H. & Bankoff, S. G. 1991 Long-wave instabilities of heated falling films: two dimensional theories of uniform layers. J. Fluid Mech. 230, 117146.CrossRefGoogle Scholar
Julien, P. & Hartley, D. 1986 Formation of roll waves in laminar sheet flow. J. Hydraul. Res. 24, 517.CrossRefGoogle Scholar
Kalliadasis, S., Demekhin, E. A., Ruyer-Quil, C. & Velarde, M. G. 2003 a Thermocapillary instability and wave formation on a film falling down a uniformly heated plane. J. Fluid Mech. 492, 303338.CrossRefGoogle Scholar
Kalliadasis, S., Kiyashko, A. & Demekhin, E. A. 2003 b Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech. 475, 377408.CrossRefGoogle Scholar
Kapitza, P. L. & Kapitza, S. P. 1949 Wave flow of thin layers of a viscous fluid. Part III. Experimental study of undulatory flow conditions. Soc. Phys. J. Exp. Theor. Phys. 19, 105120.Google Scholar
Khayat, R. E. & Kim, K. T. 2006 Thin-film flow of a viscoelastic fluid on an axisymmetric substrate of arbitrary shape. J. Fluid Mech. 552, 3771.CrossRefGoogle Scholar
Kranenburg, C. 1992 On the evolution of roll waves. J. Fluid Mech. 245, 249261.CrossRefGoogle Scholar
LeVeque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.CrossRefGoogle Scholar
LeVeque, R. J. & Yee, H. C. 1990 A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86, 187210.CrossRefGoogle Scholar
Lin, S. P. 1974 Finite amplitude side-band stability of viscous film. J. Fluid Mech. 63, 417429.CrossRefGoogle Scholar
Lin, S. P. 1975 Stability of a liquid film down a heated inclined plane. Lett. Heat Mass Transfer 2, 361370.CrossRefGoogle Scholar
Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.CrossRefGoogle Scholar
Liu, J., Schneider, B. & Gollub, J. P. 1995 Three-dimensional instabilities of film flows. Phys. Fluids 7, 5567.CrossRefGoogle Scholar
Mukhopadhyay, A. & Mukhopadhyay, A. 2007 Nonlinear stability of viscous film flowing down an inclined plane with linear temperature variation. J. Phys. D: Appl. Phys. 40, 56835690.CrossRefGoogle Scholar
Nepomnyashchy, A. A. 1974 Stability of wave regimes in a film flowing down an inclined plane. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 3, 2834.Google Scholar
Nepomnyashchy, A. A., Velarde, M. G. & Colinet, P. 2002 Interfacial Phenomena and Convection. CRC.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Oron, A. & Gottlieb, O. 2004 Subcritical and supercritical bifurcations of the first and second order Benney equations. J. Engng Math. 50, 121140.CrossRefGoogle Scholar
Oron, A. & Heining, C. 2008 Weighted-residual integral boundary-layer model for the nonlinear dynamics of thin liquid films falling on an undulating vertical wall. Phys. Fluids 20, 082102.CrossRefGoogle Scholar
Pearson, J. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4, 489500.CrossRefGoogle Scholar
Prokopiou, T., Cheng, M. & Chang, H.-C. 1991 Long waves on inclined films at high Reynolds number. J. Fluid Mech. 222, 665691.CrossRefGoogle Scholar
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163194.CrossRefGoogle Scholar
Rosenau, P., Oron, A. & Hyman, J. 1992 Bounded and unbounded patterns of the Benney equation. Phys. Fluids A 4, 11021104.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.CrossRefGoogle Scholar
Ruyer-Quil, C., Scheid, B., Kalliadasis, S., Velarde, M. G. & Zeytounian, R. Kh. 2005 Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech. 538, 199222.CrossRefGoogle Scholar
Salamon, T. R., Armstrong, R. C. & Brown, R. A. 1994 Traveling waves on vertical films: Numerical analysis using the finite element method. Phys. Fluids 6, 22022220.CrossRefGoogle Scholar
Samanta, A. 2008 Stability of liquid film falling down a vertical non-uniformly heated wall. Physica D 237, 25872598.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C., Kalliadasis, S., Velarde, M. G. & Zeytounian, R. Kh. 2005 a Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech. 538, 223244.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C., Thiele, U., Kabov, O. A., Legros, J. C. & Colinet, P. 2005 b Validity domain of the Benney equation including the Marangoni effect for closed and open flows. J. Fluid Mech. 527, 303335.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.CrossRefGoogle Scholar
Scriven, L. & Sternling, C. 1964 On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19, 321340.CrossRefGoogle Scholar
Shkadov, V. Y. 1967 Wave conditions in flow of thin layer of a viscous liquid under the action of gravity. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1, 4350.Google Scholar
Smith, K. A. 1966 On convective instability induced by surface-tension gradients. J. Fluid Mech. 24, 401414.CrossRefGoogle Scholar
Smith, M. K. 1990 The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech. 217, 469485.CrossRefGoogle Scholar
Thiele, U., Goyeau, B. & Velarde, M. G. 2009 Stability analysis of thin flow along a heated porous wall. Phys. Fluids 21, 014103.CrossRefGoogle Scholar
Tougou, H. 1978 Long waves on a film flow of a viscous fluid down an inclined uneven wall. J. Phys. Soc. Japan 44, 10141019.CrossRefGoogle Scholar
Trevelyan, P. M. J., Scheid, B., Ruyer-Quil, C. & Kalliadasis, S. 2007 Heated falling films. J. Fluid Mech. 592, 295334.CrossRefGoogle Scholar
Trifonov, Y. Y. 1998 Viscous liquid film flows over a periodic surface. Intl J. Multiphase Flow 24, 11391161.CrossRefGoogle Scholar
Trifonov, Y. Y. 2007 a Stability and nonlinear wavy regimes in downward film flows on a corrugated surface. J. Appl. Mech. Tech. Phys. 48, 91100.CrossRefGoogle Scholar
Trifonov, Y. Y. 2007 b Stability of a viscous liquid film flowing down a periodic surface. Intl J. Multiph. Flow 33, 11861204.CrossRefGoogle Scholar
Usha, R. & Uma, B. 2004 Long waves on a viscoelastic film flow down a wavy incline. Intl J. Non-Linear Mech. 39, 15891602.CrossRefGoogle Scholar
Vlachogiannis, M. & Bontozoglou, V. 2002 Experiments on laminar film flow along a periodic wall. J. Fluid Mech. 457, 133156.CrossRefGoogle Scholar
Wierschem, A. & Aksel, N. 2003 Instability of a liquid film flowing down an inclined wavy plane. Physica D 186, 221237.CrossRefGoogle Scholar
Wierschem, A., Lepski, C. & Aksel, N. 2005 Effect of long undulated bottoms on thin gravity-driven films. Acta Mechanica 179, 4166.CrossRefGoogle Scholar
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.CrossRefGoogle Scholar
Zanuttigh, B. & Lamberti, A. 2002 Roll waves simulation using shallow water equations and weighted average flux method. J. Hydraul. Res. 553, 610622.CrossRefGoogle Scholar