Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T05:44:52.306Z Has data issue: false hasContentIssue false

Feed-forward control of a perturbed backward-facing step flow

Published online by Cambridge University Press:  22 October 2014

N. Gautier
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) - UMR7636 CNRS Université Pierre et Marie Curie (UPMC) Ecole Supérieure de Physique et Chimie Industrielles de la ville de Paris (ESPCI), 10, rue Vauquelin, 75005, Paris, France
J.-L. Aider*
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) - UMR7636 CNRS Université Pierre et Marie Curie (UPMC) Ecole Supérieure de Physique et Chimie Industrielles de la ville de Paris (ESPCI), 10, rue Vauquelin, 75005, Paris, France
*
Email address for correspondence: [email protected]

Abstract

Closed-loop control of an amplifier flow is experimentally investigated. A feed-forward algorithm is implemented to control the flow downstream of a backward-facing step (BFS) perturbed by upstream perturbations. Upstream and downstream data are extracted from real-time velocity fields to compute an ARMAX model used to effect actuation. This work, done at Reynolds number 430, investigates the practical feasibility of this approach which has shown great promise in a recent numerical study by Hervé et al. (J. Fluid Mech., vol. 702, 2012, pp. 26–58). The linear nature of the regime is checked, two-dimensional upstream perturbations are introduced, and the degree to which the flow can be controlled is quantified. The resulting actuation is able to effectively reduce downstream energy levels and fluctuations. The limitations and difficulties of applying such an approach to an experiment are also discussed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aider, J.-L., Danet, A. & Lesieur, M. 2007 Large-eddy simulation applied to study the influence of upstream conditions on the time-dependant and averaged characteristics of a backward-facing step flow. J. Turbul. 8, 51.Google Scholar
Akervik, R., Hoepffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. J. Fluid Mech. 579, 305314.CrossRefGoogle Scholar
Armaly, B. F., Durst, F., Pereira, J. C. F. & Schonung, B. 1983 Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473496.Google Scholar
Barkley, D., Gomes, M. G. M. & Anderson, R. D. 2002 Three-dimensional instability in flow over a backward facing step. J. Fluid Mech. 473, 167190.CrossRefGoogle Scholar
Beaudoin, J.-F., Cadot, O., Aider, J.-L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backwards-facing step. Eur. J. Mech. 38, 147155.Google Scholar
Becker, R., Garwon, M., Gutknecht, C., Barwolff, G. & King, R. 2005 Robust control of separated shear flows in simulation and experiment. J. Process Control 15, 691700.CrossRefGoogle Scholar
Belson, B. A., Semeraro, O., Rowley, C. W. & Hennginson, D. S. 2013 Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators. Phys. Fluids 25, 054106.Google Scholar
Le Besnerais, G. & Champagnat, F. 2005 Dense optical flow by iterative local window registration. In Proceedings of the 2005 International Conference on Image Processing, ICIP 2005, Genoa, Italy, 11-14 September, pp. 137–140, IEEE.Google Scholar
Blackburn, H. M., Barkley, D. & Sherwin, S. J. 2008 Convective instability and transient growth in flow over a backward-facing step. J. Fluid Mech. 603, 271304.Google Scholar
Brandt, L., Sipp, D., Pralits, J. & Marquet, O. 2011 Effect of base flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.Google Scholar
Camacho, E. F. & Bordons, C. 2013 Model Predictive Control. Springer.Google Scholar
Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S. & Le Sant, Y. 2011 Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50, 11691182.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of 3-dimensional flow fields. Phys. Fluids A 2, 765777.CrossRefGoogle Scholar
Davoust, S., Jacquin, L. & Leclaire, B. 2012 Dynamics of $m=0$ and $m=1$ modes and of streamwise vortices in a turbulent axisymmetric mixing layer. J. Fluid Mech. 709, 408444.Google Scholar
Efe, M. O. & Ozbay, H.2003 Proper orthogonal decomposition for reduced order modeling: 2d heat flow. In Proceedings of 2003 IEEE Conference on Control Applications, vol. 2, pp. 1273–1277, IEEE.Google Scholar
Gautier, N. & Aider, J.-L. 2013 Control of the flow behind a backwards facing step with visual feedback. Proc. R. Soc. Lond. A 469, 2160.Google Scholar
Gautier, N. & Aider, J.-L. 2014a Frequency lock closed-loop control of a separated flow using visual feedback. Exp. Fluids (submitted), available on the arXiv.Google Scholar
Gautier, N. & Aider, J.-L. 2014b Real time, high frequency planar flow velocity measurements. J. Vis. (under consideration for publication), available on the arXiv under Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU.Google Scholar
Henning, L. & King, R. 2007 Robust multivariable closed-loop control of a turbulent backward-facing step flow. J. Aircraft 44.Google Scholar
Hervé, A., Sipp, D., Schmid, P. & Samuelides, M. 2012 A physics-based approach to flow control using system identification. J. Fluid Mech. 702, 2658.Google Scholar
Hung, L., Parviz, M. & John, K. 1997 Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349374.Google Scholar
Ljung, L. 1999 System Identification: Theory for the User, 2nd edn. Prentice Hall.Google Scholar
Marquet, O., Sipp, D., Chomaz, D. & Jacquin, J. M. 2008 Amplifier and resonator dynamics of a low-Reynolds number recirculation bubble in a global framework. J. Fluid Mech. 605, 429443.Google Scholar
Pamart, P., Dandois, J., Garnier, E. & Sagaut, P.2010 Narx modeling and adaptive closed-loop control of a separation by synthetic jet in unsteady rans computations. In 5th AIAA Flow Control Conference, AIAA.Google Scholar
Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G. 2008 Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.CrossRefGoogle Scholar
Penrose, R. 1955 A generalized inverse for matrices. Proc. Camb. Phil. Soc. 51, 406413.Google Scholar
Rowley, C. W., Colonius, T. & Murray, R. M. 2004 Model reduction for compressible flows using pod and Galerkin project. Physica D 189, 115129.Google Scholar
Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251276.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and transition in shear flows. Appl. Math. Sci. 142, 558.Google Scholar
Semeraro, O.2013 Active control and modal structures in transitional shear flows. PhD thesis, KTH.Google Scholar
Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S. 2011 Transition delay in a boundary layer flow using active control. J. Fluid Mech. 677, 63102.CrossRefGoogle Scholar
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open flows: a linearized approach. Appl. Mech. Rev. 63, 030801.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices. J. Fluid Mech. 387, 353396.Google Scholar