Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T21:40:56.138Z Has data issue: false hasContentIssue false

Faraday waves on a cylindrical fluid filament – generalised equation and simulations

Published online by Cambridge University Press:  19 October 2018

Sagar Patankar
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
Palas Kumar Farsoiya
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
Ratul Dasgupta*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
*
Email address for correspondence: [email protected]

Abstract

We perform linear stability analysis of an interface separating two immiscible, inviscid, quiescent fluids subject to a time-periodic body force. In a generalised, orthogonal coordinate system, the time-dependent amplitude of interfacial perturbations, in the form of standing waves, is shown to be governed by a generalised Mathieu equation. For zero forcing, the Mathieu equation reduces to a (generalised) simple harmonic oscillator equation. The generalised Mathieu equation is shown to govern Faraday waves on four time-periodic base states. We use this equation to demonstrate that Faraday waves and instabilities can arise on an axially unbounded, cylindrical capillary fluid filament subject to radial, time-periodic body force. The stability chart for solutions to the Mathieu equation is obtained through numerical Floquet analysis. For small values of perturbation and forcing amplitude, results obtained from direct numerical simulations (DNS) of the incompressible Euler equation (with surface tension) show very good agreement with theoretical predictions. Linear theory predicts that unstable Rayleigh–Plateau modes can be stabilised through forcing. This prediction is borne out by DNS results at early times. Nonlinearity produces higher wavenumbers, some of which can be linearly unstable due to forcing and thus eventually destabilise the filament. We study axisymmetric as well as three-dimensional perturbations through DNS. For large forcing amplitude, localised sheet-like structures emanate from the filament, suffering subsequent fragmentation and breakup. Systematic parametric studies are conducted in a non-dimensional space of five parameters and comparison with linear theory is provided in each case. Our generalised analysis provides a framework for understanding free and (parametrically) forced capillary oscillations on quiescent base states of varying geometrical configurations.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adou, A.-H. E. & Tuckerman, L. S. 2016 Faraday instability on a sphere: Floquet analysis. J. Fluid Mech. 805, 591610.Google Scholar
Ahrens, J., Geveci, B. & Law, C. 2005 Paraview: an end-user tool for large data visualization. In The Visualization Handbook, vol. 717. Elsevier.Google Scholar
Ashgriz, N. & Mashayek, F. 1995 Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163190.Google Scholar
Basaran, O. A, Scott, T. C. & Byers, C. H. 1989 Drop oscillations in liquid–liquid systems. AIChE J. 35 (8), 12631270.Google Scholar
Bell, J. B, Colella, P. & Glaz, H. M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85 (2), 257283.Google Scholar
Bender, C. M. & Orszag, S. A. 2010 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Bohr, N. 1909 Xii. Determination of the surface-tension of water by the method of jet vibration. Phil. Trans. R. Soc. Lond. A 209 (441-458), 281317.Google Scholar
Bostwick, J. B. & Steen, P. H. 2015 Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47, 539568.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.Google Scholar
Cauchy, A. L. 1827 Mémoire sur la théorie de la propagation des ondes a la surface d’un fluide pesant d’une profondeur indéfinie. In Mémoires Présentés par Divers Savants a l’Académie Royale des Sciences de l’Institut de France, p. 130. Sciences Mathématiques et Physique.Google Scholar
Cervone, A., Manservisi, S. & Scardovelli, R. 2010 Simulation of axisymmetric jets with a finite element Navier–Stokes solver and a multilevel VoF approach. J. Comput. Phys. 229 (19), 68536873.Google Scholar
Chorin, A. J. 1968 Numerical solution of incompressible flow problems. Stud. Numer. Anal. 2, 6471.Google Scholar
Dasgupta, R., Tomar, G. & Govindarajan, R. 2015 Numerical study of laminar, standing hydraulic jumps in a planar geometry. Eur. Phys. J. E 38 (5), 45.Google Scholar
Debnath, L. 1994 Nonlinear Water Waves. Academic.Google Scholar
Denner, F. 2016 Frequency dispersion of small-amplitude capillary waves in viscous fluids. Phys. Rev. E 94 (2), 023110.Google Scholar
Drazin, P. G. 2002 Introduction to Hydrodynamic Stability. Cambridge University Press.Google Scholar
Driessen, T., Jeurissen, R., Wijshoff, H., Toschi, F. & Lohse, D. 2013 Stability of viscous long liquid filaments. Phys. Fluids 25 (6), 062109.Google Scholar
Driessen, T., Sleutel, P., Dijksman, F., Jeurissen, R. & Lohse, D. 2014 Control of jet breakup by a superposition of two Rayleigh–Plateau-unstable modes. J. Fluid Mech. 749, 275296.Google Scholar
Faraday, M. et al. 1837 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. In Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, vol. 3, pp. 4951. The Royal Society.Google Scholar
Farsoiya, P. K., Mayya, Y. S. & Dasgupta, R. 2017 Axisymmetric viscous interfacial oscillations–theory and simulations. J. Fluid Mech. 826, 797818.Google Scholar
Fuster, D., Bagué, A., Boeck, T., Le Moyne, L., Leboissetier, A., Popinet, S., Ray, P., Scardovelli, R. & Zaleski, S. 2009 Simulation of primary atomization with an octree adaptive mesh refinement and VoF method. Intl J. Multiphase Flow 35 (6), 550565.Google Scholar
Fuster, D., Matas, J.-P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.Google Scholar
Haefner, S., Benzaquen, M., Bäumchen, O., Salez, T., Peters, R., McGraw, J. D., Jacobs, K., Raphaël, E. & Dalnoki-Veress, K. 2015 Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Commun. 6, 7409.Google Scholar
Harrison, W. J. 1908 The influence of viscosity on the oscillations of superposed fluids. Proc. Lond. Math. Soc. 2 (1), 396405.Google Scholar
James, A. J., Vukasinovic, B., Smith, M. K. & Glezer, A. 2003 Vibration-induced drop atomization and bursting. J. Fluid Mech. 476, 128.Google Scholar
Kelvin, L. 1871 Part iv. (letter to Professor Tait, of date August 23, 1871.) and part v. Waves under motive power of gravity and cohesion jointly, without wind. Phil. Mag. 42, 370377.Google Scholar
Kelvin, L. 1887 On ship waves. Proc. Inst. Mech. Engrs 38 (1), 409434.Google Scholar
Korteweg, D. J. & De Vries, G. 1895 Xli. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Phil. Mag. J. Sci. 39 (240), 422443.Google Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous liquids. Proc. R. Soc. Lond. A 452, 11131126.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Longuet-Higgins, M. S. 1962 Resonant interactions between two trains of gravity waves. J. Fluid Mech. 12 (3), 321332.Google Scholar
MATLAB 2015 MATLAB and Statistics Toolbox Release 2015b. The MathWorks Inc.Google Scholar
McGoldrick, L. F. 1965 Resonant interactions among capillary-gravity waves. J. Fluid Mech. 21 (2), 305331.Google Scholar
Meister, B. J. & Scheele, G. F. 1967 Generalized solution of the tomotika stability analysis for a cylindrical jet. AIChE J. 13 (4), 682688.Google Scholar
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22 (1), 143165.Google Scholar
Miller, C. A. & Scriven, L. E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32 (3), 417435.Google Scholar
Natarajan, R. & Brown, R. A. 1987 Third-order resonance effects and the nonlinear stability of drop oscillations. J. Fluid Mech. 183, 95121.Google Scholar
Nayfeh, A. H. 1973 Perturbation Methods. Wiley.Google Scholar
O’Connor, N. L.2008 The complex spatiotemporal dynamics of a shallow fluid layer. PhD thesis, Virginia Tech.Google Scholar
Perinet, N., Juric, D. & Tuckerman, L. S. 2009 Numerical simulation of Faraday waves. J. Fluid Mech. 635, 126.Google Scholar
Perlin, M. & Schultz, W. W. 2000 Capillary effects on surface waves. Annu. Rev. Fluid Mech. 32 (1), 241274.Google Scholar
Phillips, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude part 1. The elementary interactions. J. Fluid Mech. 9 (2), 193217.Google Scholar
Plateau, J. A. F. 1873 Statique Expérimentale et Théorique des Liquides Soumis Aux Seules Forces Moléculaires, vol. 2. Gauthier-Villars.Google Scholar
Poisson, S.-D. 1818 Mémoire sur la théorie des ondes. Mém. Acad. R. Sci. Inst. France 2, 70186.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.Google Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.Google Scholar
Popinet, S.2018 Gerris Test Suite. http://gfs.sourceforge.net/tests/tests/reynolds.html, Online; accessed 26-June-2018.Google Scholar
Prosperetti, A. 1976 Viscous effects on small-amplitude surface waves. Phys. Fluids 19 (2), 195203.Google Scholar
Prosperetti, A. 1980 Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100 (2), 333347.Google Scholar
Prosperetti, A. 1981 Motion of two superposed viscous fluids. Phys. Fluids 24 (7), 12171223.Google Scholar
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.Google Scholar
Prosperetti, A. 2012 Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Phys. Fluids 24 (3), 032109.Google Scholar
Rand, R.2016 CISM Course – Time Periodic Systems, Sep. 5–9 2016, Italy.http://media.cism.it/courses%2FA1602%2Frand%2Fcourses_A1602_rand_mathieu_CISM.pdf.Google Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Rayleigh, Lord 1890 Xliii. On the tension of water surfaces, clean and contaminated, investigated by the method of ripples. Lond. Edinb. Dublin Phil. Mag. J. Sci. 30 (186), 386400.Google Scholar
Rayleigh, Lord 1892 Xvi. On the instability of a cylinder of viscous liquid under capillary force. Lond. Edinb. Dublin Phil. Mag. J. Sci. 34 (207), 145154.Google Scholar
Shen, L., Denner, F., Morgan, N., van Wachem, B. & Dini, D. 2018 Capillary waves with surface viscosity. J. Fluid Mech. 847, 644663.Google Scholar
Stokes, G. G. 2009 On the theory of oscillatory waves. In Mathematical and Physical Papers, pp. 197229. Cambridge University Press.Google Scholar
Stone, H. A. & Brenner, M. P. 1996 Note on the capillary thread instability for fluids of equal viscosities. J. Fluid Mech. 318, 373374.Google Scholar
Testik, F. Y., Barros, A. P. & Bliven, L. F. 2006 Field observations of multimode raindrop oscillations by high-speed imaging. J. Atmos. Sci. 63 (10), 26632668.Google Scholar
Thoraval, M.-J., Takehara, K., Etoh, T. G. & Thoroddsen, S. T. 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234258.Google Scholar
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150 (870), 322337.Google Scholar
Trinh, E., Zwern, A. & Wang, T. G. 1982 An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115, 453474.Google Scholar
Tripathi, M. K., Sahu, K. C. & Govindarajan, R. 2015 Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6, 6268.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Tsai, C. S., Mao, R. W., Lin, S. K., Zhu, Y. & Tsai, S. C. 2014 Faraday instability-based micro droplet ejection for inhalation drug delivery. Technology 2 (01), 7581.Google Scholar
Weisstein, E. W.2017a Cylindrical Coordinates. From MathWorld-A Wolfram Web Resource. Gradient. http://mathworld.wolfram.com/Gradient.html, [Online; accessed 11-April-2018].Google Scholar
Weisstein, E. W.2017b Modified Bessel Function of the First Kind. From MathWorld-A Wolfram Web Resource. Modified Bessel Function of the First Kind. http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html, [Online; accessed 19-June-2018].Google Scholar
Weisstein, E. W.2017c Modified Bessel Function of the Second Kind. From MathWorld-A Wolfram Web Resource Modified Bessel Function of the Second Kind. http://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html, [Online; accessed 19-June-2018].Google Scholar
Weisstein, E. W.2017d Spherical Coordinates. From MathWorld-A Wolfram Web Resource. Spherical Coordinates. http://mathworld.wolfram.com/SphericalCoordinates.html, [Online; accessed 12-April-2018].Google Scholar
Weisstein, E. W.2017e Scale Factor. From MathWorld-A Wolfram Web Resource. Scale Factor. http://mathworld.wolfram.com/ScaleFactor.html, [Online; accessed 17-June-2018].Google Scholar
Wilton, J. R. 1915 Lxxii. on ripples. Lond. Edinb. Dublin Phil. Mag. J. Sci. 29 (173), 688700.Google Scholar
Wright, J., Yon, S. & Pozrikidis, C. 2000 Numerical studies of two-dimensional Faraday oscillations of inviscid fluids. J. Fluid Mech. 402, 132.Google Scholar

Patankar et al. supplementary movie 1

Case 6

Download Patankar et al. supplementary movie 1(Video)
Video 8.5 MB

Patankar et al. supplementary movie 2

Case 12

Download Patankar et al. supplementary movie 2(Video)
Video 8.2 MB

Patankar et al. supplementary movie 3

Case 15

Download Patankar et al. supplementary movie 3(Video)
Video 8.4 MB

Patankar et al. supplementary movie 4

Case 16

Download Patankar et al. supplementary movie 4(Video)
Video 9.7 MB
Supplementary material: PDF

Patankar et al. supplementary material

Supplementary material

Download Patankar et al. supplementary material(PDF)
PDF 3.1 MB
Supplementary material: File

Patankar et al. supplementary material

Supplementary data

Download Patankar et al. supplementary material(File)
File 4.9 MB