Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:17:54.607Z Has data issue: false hasContentIssue false

A family of helically symmetric vortex equilibria

Published online by Cambridge University Press:  26 August 2009

DAN LUCAS*
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
DAVID G. DRITSCHEL
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
*
Email address for correspondence: [email protected]

Abstract

We present a family of steadily rotating equilibrium states consisting of helically symmetric vortices in an incompressible inviscid irrotational unbounded fluid. These vortices are described by contours bounding regions of uniform axial vorticity. Helical symmetry implies material conservation of axial vorticity (in the absolute frame of reference) when the flow field parallel to vortex lines is proportional to (1+ϵ2r2)−1/2, where ϵ is the pitch and r is the distance from the axis. This material conservation property enables equilibria to be calculated simply by a restriction on the helical stream function. The states are parameterized by their mean radius and centroid position. In the case of a single vortex, parameter space cannot be fully filled by our numerical approach. We conjecture multiply connected contours will characterize equilibria where the algorithm fails. We also consider multiple vortices, evenly azimuthally spaced about the origin. Stability properties are investigated numerically using a helical CASL algorithm.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseenko, S. V., Kuibin, P. A., Okulov, V. L. & Shtork, S. I. 1999 Helical vortices in swirl flow. J. Fluid Mech. 382, 195243.CrossRefGoogle Scholar
Dritschel, D. G. 1985 The stability and energetics of corotating uniform vortices. J. Fluid Mech. 157, 95134.CrossRefGoogle Scholar
Dritschel, D. G. 1988 Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys. 77 (1), 240266.CrossRefGoogle Scholar
Dritschel, D. G. 1991 Generalized helical Beltrami flows. J. Fluid Mech. 222, 525541.CrossRefGoogle Scholar
Dritschel, D. G. 1995 A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269303.CrossRefGoogle Scholar
Dritschel, D. G. & Ambaum, M. H. P. 1997 A contour-advective semi-Lagrangian algorithm for the simulation of fine-scale conservative fields. Q. J. R. Meteorol. Soc. 123, 10971130.Google Scholar
Fukumoto, Y. & Okulov, V. L. 2005 The velocity field induced by a helical vortex tube. Phys. Fluids 17 (107101).CrossRefGoogle Scholar
Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.Google Scholar
Kirchhoff, G. 1876 Vorlesungen über mathematische Physik. Mechanik.Google Scholar
Kuibin, P. A. & Okulov, V. L. 1998 Self-induced motion of helical vortices. In IUTAM Symposium on Dynamics of Slender Vortices, pp. 55–62.Google Scholar
Landman, M. J. 1990 On the generation of helical waves in circular pipe flow. Phys. Fluids A 2, 738747.CrossRefGoogle Scholar
Loiseleux, T., Chomaz, J. M. & Huerre, P. 1998 The effect of swirl on jets and wakes: linear instability of the rankine vortex with axial flow. Phys. Fluids 10, 11201134.Google Scholar
Macaskill, C., Padden, W. E. P. & Dritschel, D. G. 2003 The CASL algorithm for quasi-geostrophic flow in a cylinder. J. Comput. Phys. 488, 232251.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1972 The motion of a vortex filament with axial flow. Phil. Trans. R. Soc. Lond. A 272, 403429.Google Scholar
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57 (3), 417431.CrossRefGoogle Scholar
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.CrossRefGoogle Scholar
Okulov, V. L. & Sørensen, J. N. 2007 Stability of helical tip vortices in a rotor far wake. J. Fluid Mech. 576, 125.Google Scholar
Ricca, R. L. 1994 Effect of torsion on vortex filament motion. J. Fluid Mech. 273, 241259.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Walther, J. H., Guènot, M., Machefaux, E., Rasmussen, J. T., Chatelain, P., Okulov, V. L., Sørensen, J. N., Bergdorf, M. & Koumoutsakos, P. 2007 A numerical study of the stability of helical vortices using vortex methods. In The Science of Making Torque from Wind, Journal of Physics: Conference Series, vol. 75.Google Scholar
Widnall, S. E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54 (4), 641663.Google Scholar