Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T05:57:41.682Z Has data issue: false hasContentIssue false

Extended kinetic theory for granular flow over and within an inclined erodible bed

Published online by Cambridge University Press:  27 December 2019

Diego Berzi*
Affiliation:
Department of Civil and Environmental Engineering, Politecnico di Milano, Milan 20133, Italy
James T. Jenkins
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
Patrick Richard
Affiliation:
IFSTTAR, site de Nantes, GPEM/MAST, 44344 Bouguenais, France
*
Email address for correspondence: [email protected]

Abstract

We employ kinetic theory, extended to incorporate the influence of velocity correlations, friction and particle stiffness, and a model for rate-independent, elastic components of the stresses at volume fractions larger than a critical value, in an attempt to reproduce the results of discrete-element numerical simulations of steady, fully developed, dissipative, collisional shearing flows over and within inclined, erodible, fragile beds. The flows take place between vertical, frictional sidewalls at different separations with sufficient total particle flux so that differently inclined, erodible beds result. Numerical solutions of the spanwise-averaged differential equations of the theory and the associated boundary conditions are seen to be capable of reproducing profiles of stresses, solid volume fraction, average velocity and the strength of the particle velocity fluctuations, both in the rapid collisional flow above the bed and in the slower creeping flow within the bed. The indication is that extended kinetic theory has the unique ability to faithfully describe steady, inhomogeneous, granular shearing flows, ranging from dilute to extremely dense, using balances of momentum and energy and employing boundary conditions that are associated with the balances, with a small number of physically determined, microscopic parameters.

Type
JFM Papers
Copyright
© The Author(s), 2019. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M. & Luding, S. 2003 First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids 15, 22982312.CrossRefGoogle Scholar
Berzi, D. 2014 Extended kinetic theory applied to dense, granular, simple shear flows. Acta Mech. 225 (8), 21912198.CrossRefGoogle Scholar
Berzi, D. & Jenkins, J. T. 2015 Steady shearing flows of deformable, inelastic spheres. Soft Matt. 11 (24), 47994808.CrossRefGoogle ScholarPubMed
Berzi, D. & Jenkins, J. T. 2018 Fluidity, anisotropy, and velocity correlations in frictionless, collisional grain flows. Phys. Rev. Fluids 3, 094303.CrossRefGoogle Scholar
Berzi, D., Jenkins, J. T. & Richard, P. 2019 Erodible, granular beds are fragile. Soft Matt. 15, 71737178.CrossRefGoogle ScholarPubMed
Berzi, D. & Vescovi, D. 2015 Different singularities in the functions of extended kinetic theory at the origin of the yield stress in granular flows. Phys. Fluids 27 (1), 013302.CrossRefGoogle Scholar
Bharathraj, S. & Kumaran, V. 2018 Effect of particle stiffness on contact dynamics and rheology in a dense granular flow. Phys. Rev. E 97, 012902.Google Scholar
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. 2011 Jamming by shear. Nature 480 (7377), 355358.CrossRefGoogle ScholarPubMed
Carnahan, N. F. & Starling, K. E. 1969 Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51 (2), 635636.CrossRefGoogle Scholar
Chapman, S., Cowling, T. G. & Burnett, D. 1990 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.Google Scholar
Chialvo, S., Sun, J. & Sundaresan, S. 2012 Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85 (2), 021305.Google ScholarPubMed
Crassous, J., Metayer, J.-F., Richard, P. & Laroche, C. 2008 Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. 2008, P03009.Google Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.Google ScholarPubMed
Foerster, S. F., Louge, M. Y., Chang, H. & Allia, K. 1994 Measurements of the collision properties of small spheres. Phys. Fluids 6 (3), 11081115.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.CrossRefGoogle Scholar
Garzó, V. & Dufty, J. W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59 (5), 58955911.Google ScholarPubMed
GdR-Midi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.Google Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.CrossRefGoogle Scholar
Gollin, D., Berzi, D. & Bowman, E. T. 2017 Extended kinetic theory applied to inclined granular flows: role of boundaries. Granul. Matt. 19, 56.CrossRefGoogle Scholar
Haff, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401430.CrossRefGoogle Scholar
Henann, D. L. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110 (17), 67306735.CrossRefGoogle ScholarPubMed
Jenkins, J. T. 1992 Boundary conditions for rapid granular flow: flat, frictional walls. J. Appl. Mech. 59 (1), 120.CrossRefGoogle Scholar
Jenkins, J. T. 1994 Rapid granular flow down inclines. Appl. Mech. Rev. 47, S240–244.CrossRefGoogle Scholar
Jenkins, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18 (10), 103307.CrossRefGoogle Scholar
Jenkins, J. T. 2007 Dense inclined flows of inelastic spheres. Granul. Matt. 10 (1), 4752.CrossRefGoogle Scholar
Jenkins, J. T. & Askari, E. 1991 Boundary conditions for rapid granular flows: phase interfaces. J. Fluid Mech. 223, 497508.CrossRefGoogle Scholar
Jenkins, J. T. & Berzi, D. 2010 Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matt. 12 (2), 151158.CrossRefGoogle Scholar
Jenkins, J. T. & Hanes, D. M. 1993 The balance of momentum and energy at an interface and freely flying grains in a rapid granular flow between colliding. Phys. Fluids A 5, 781783.CrossRefGoogle Scholar
Jenkins, J. T. & Louge, M. Y. 1997 On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall. Phys. Fluids 9 (10), 2835.CrossRefGoogle Scholar
Jenkins, J. T. & Richman, M. W. 1985 Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28 (12), 3485.CrossRefGoogle Scholar
Jenkins, J. T. & Richman, M. W. 1986 Boundary conditions for plane flows of smooth, nearly elastic, circular disks. J. Fluid Mech. 171, 5369.CrossRefGoogle Scholar
Jenkins, J. T. & Richman, M. W. 1988 Plane simple shear of smooth inelastic circular disks: the anisotropy of the second moment in the dilute and dense limits. J. Fluid Mech. 192, 313328.CrossRefGoogle Scholar
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187202.CrossRefGoogle Scholar
Jenkins, J. T. & Zhang, C. 2002 Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14 (3), 12281235.CrossRefGoogle Scholar
Jop, P. 2015 Rheological properties of dense granular flows. Comptes Rendus Physique 16 (1), 6272.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of side walls for granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11, 17446848.CrossRefGoogle ScholarPubMed
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108 (17), 178301.Google ScholarPubMed
Komatsu, T., Inagaki, S., Nakagawa, N. & Nasuno, S. 2001 Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86 (9), 17571760.CrossRefGoogle Scholar
Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79 (2), 021306.Google ScholarPubMed
Kremer, G. M., Santos, A. & Garzó, V. 2014 Transport coefficients of a granular gas of inelastic rough hard spheres. Phys. Rev. E 90, 116.Google ScholarPubMed
Kumaran, V. 2009 Dynamics of dense sheared granular flows. Part II. The relative velocity distributions. J. Fluid Mech. 632, 145198.CrossRefGoogle Scholar
Larcher, M. & Jenkins, J. T. 2013 Segregation and mixture profiles in dense, inclined flows of two types of spheres. Phys. Fluids 25 (11), 113301.CrossRefGoogle Scholar
Louge, M. Y. 1994 Computer simulations of rapid granular flows of spheres interacting with a flat, frictional boundary. Phys. Fluids 6 (7), 22532269.CrossRefGoogle Scholar
Lun, C. K. K. 1991 Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539559.CrossRefGoogle Scholar
Lun, C. K. K. & Bent, A. A. 1994 Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech. 258, 335353.CrossRefGoogle Scholar
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223256.CrossRefGoogle Scholar
Mitarai, N. & Nakanishi, H. 2005 Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow. Phys. Rev. Lett. 94 (12), 128001.CrossRefGoogle ScholarPubMed
Mitarai, N. & Nakanishi, H. 2007 Velocity correlations in dense granular shear flows: effects on energy dissipation and normal stress. Phys. Rev. E 75 (3), 031305.Google ScholarPubMed
Oyama, N., Mizuno, H. & Saitoh, K. 2019 Avalanche interpretation of the power-law energy spectrum in three-dimensional dense granular flow. Phys. Rev. Lett. 122, 188004.CrossRefGoogle ScholarPubMed
Pasini, J. M. & Jenkins, J. T. 2005 Aeolian transport with collisional suspension. Phil. Trans. Ser. A Math. Phys. Engng Sci. 363 (1832), 16251646.CrossRefGoogle ScholarPubMed
Pouliquen, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.CrossRefGoogle Scholar
Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M. & Delannay, R. 2008 Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101 (24), 248002.CrossRefGoogle ScholarPubMed
Richman, M. W. 1988 Boundary conditions based upon a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75 (1–4), 227240.CrossRefGoogle Scholar
Saha, S. & Alam, M. 2016 Normal stress differences, their origin and constitutive relations for a sheared granular fluid. J. Fluid Mech. 795, 549580.CrossRefGoogle Scholar
Silbert, L. E. 2010 Jamming of frictional spheres and random loose packing. Soft Matt. 6 (13), 2918.CrossRefGoogle Scholar
Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T. C., D., L. & Plimpton, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302.Google ScholarPubMed
Sun, J. & Sundaresan, S. 2011 A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech. 682, 590616.CrossRefGoogle Scholar
Taberlet, N., Richard, P., Henry, E. & Delannay, R. 2004 The growth of a super stable heap: an experimental and numerical study. Europhys. Lett. 68 (4), 515521.CrossRefGoogle Scholar
Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J. M., Jenkins, J. T. & Delannay, R. 2003 Superstable granular heap in a thin channel. Phys. Rev. Lett. 91, 264301.CrossRefGoogle Scholar
Torquato, S. 1995 Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51 (4), 31703182.Google ScholarPubMed
Vescovi, D., Berzi, D., Richard, P. & Brodu, N. 2014 Plane shear flows of frictionless spheres: kinetic theory and 3D soft-sphere discrete element method simulations. Phys. Fluids 26 (5), 053305.CrossRefGoogle Scholar
Zhang, Q. & Kamrin, K. 2017 Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001.Google ScholarPubMed