Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T04:47:15.837Z Has data issue: false hasContentIssue false

Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure

Published online by Cambridge University Press:  20 April 2006

Stavros Tavoularis
Affiliation:
Present address: Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada K1N 6N5. Department of Chemical Engineering, The Johns Hopkins University, Baltimore, MD 21218
Stanley Corrsin
Affiliation:
Department of Chemical Engineering, The Johns Hopkins University, Baltimore, MD 21218

Abstract

Previous measurements in nearly homogeneous sheared turbulence with a uniform mean temperature gradient are here supplemented with data on the fine structure of the velocity and temperature fluctuation fields. The statistics of signal derivatives and of band-passed signals show that neither field is locally isotropic in the spectral range covered, possibly because of the insufficiently large turbulent Reynolds and Péclet numbers. Observed skewnesses of both velocity and temperature derivatives are explained qualitatively with the use of a kind of ‘mixing-length’ model. The flatness factors of the derivatives and of band-passed, high-frequency signals indicate appreciable departures from normality, consistent with the spatially ‘spotty’ fine structure. The temperature flatnesses are a bit larger than those of the streamwise velocity. The homogeneous shear flow data are compatible with measurements in turbulent boundary layers at comparable RΛ and PΛθ.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Chambers, A. J., Van Atta, C. W., Friehe, C. A. & Helland, K. N. 1978 Skewness of temperature derivative in a heated grid flow. Phys. Fluids 21, 509.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1949 The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. A 199, 238.Google Scholar
Bradshaw, P. 1967 Conditions for the existence of an inertial subrange in turbulent flow. Nat. Phys. Lab. Aero. Rep. 1220.Google Scholar
Champagne, F. H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67.Google Scholar
Corrsin, S. 1949 An experimental verification of local isotropy. J. Aero. Sci. 16, 757.Google Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469.Google Scholar
Corrsin, S. 1958 Local isotropy in turbulent shear flow. N.A.C.A. RM58B11.Google Scholar
Elena, M., Chauve, M.-P. & Dumas, R. 1977 Effet de l'aspiration sur les facteurs de dis-symétrie et d'aplatissement des dérivées temporelles dans une conduite cylindrique chauffée. C. R. Acad. Sci. Paris B 284, 77.Google Scholar
Friehe, C. A., Gibson, C. H., Champagne, F. H. & La Rue, J. C. 1975 Atmos. Tech. 7, 15.
Gibson, C. H. & Masiello, P. J. 1972 Observations of the variability of dissipation rates of turbulent velocity and temperature fields. In Statistical Models and Turbulence (ed M. Rosenblatt and C. Van Atta), Lecture Notes in Physics, vol. 12. Springer.
Gibson, C. H., Friehe, C. A. & McConnell, O. 1977 Structure of sheared turbulent fields. Phys. Fluids 20, S156.Google Scholar
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 Statistics of the fine structure of turbulent velocity and temperature fields measured at high Reynolds numbers. J. Fluid Mech. 41, 153.Google Scholar
Harris, V. G., Graham, J. A. & Corrsin, S. 1977 Further experiments in nearly homogeneous turbulent shear flow. J. Fluid Mech. 81, 657.Google Scholar
Kennedy, D. A. & Corrsin, S. 1961 Spectral flatness factor and ‘intermittency’ in turbulence and in non-linear noise. J. Fluid Mech. 10, 366.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. U.R.S.S. 30, 301.Google Scholar
Kuo, A. Y. & Corrsin, S. 1971 Experiments on internal intermittency and free-structure distribution functions in fully turbulent fluid. J. Fluid Mech. 50, 285.Google Scholar
Laufer, J. 1951 Investigation of turbulent flow in a two-dimensional channel. N.A.C.A. Rep. 1053.Google Scholar
Mestayer, P. & Chambaud, P. 1979 Some limitations to measurements of turbulence micro-structure with hot and cold wires. Boundary Layer Met. 16, 311.Google Scholar
Nevzgljadov, V. 1945 A phenomenological theory of turbulence. C.R. Acad. Sci. U.R.S.S. 47, 235.Google Scholar
Oboukhov, A. M. 1949 Structure of the temperature field in turbulent flow. Izv. Akad. Nauk S.S.S.R., Ser. Geogr. i Geofiz. 13, 58.Google Scholar
Prandtl, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. angew. Math. Mech. 5, 136.Google Scholar
Sandborn, V. A. 1959 Measurements of intermittency of turbulent motion in a boundary layer. J. Fluid Mech. 6, 221.Google Scholar
Sreenivasan, K. R. & Antonia, R. A. 1977 Skewness of temperature derivatives in turbulent shear flows. Phys. Fluids 20, 1986.Google Scholar
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Temperature dissipation fluctuations in a turbulent boundary layer. Phys. Fluids 20, 1238.Google Scholar
Sreenivasan, K. R. & Tavoularis, S. 1980 On the skewness of the temperature derivative in turbulent flows. J. Fluid Mech. 101, 783.Google Scholar
Sreenivasan, K. R., Tavoularis, S., Henry, R. & Corrsin, S. 1980 Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech. 100, 597.Google Scholar
Stearns, S. D. 1975 Digital Signals Analysis. Rochelle Park, New Jersey: Hayden.
Tavoularis, S. 1978 Experiments in turbulent transport and mixing. Ph.D. dissertation, The Johns Hopkins University, Baltimore.
Tavoularis, S., Bennett, J. C. & Corrsin, S. 1978 Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88, 63.Google Scholar
Tavoularis, S. & Corrsin, S. 1981 Experiments in nearly homogeneous turbulence with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 104, 311.Google Scholar
Taylor, G. I. 1915 Eddy motion in the atmosphere. Phil. Trans. Roy. Soc. A 215, 1.Google Scholar
Ueda, H. & Hinze, J. O. 1975 Fine-structure turbulence in the wall region of a turbulent boundary layer. J. Fluid Mech. 67, 125.Google Scholar
Wyngaard, J. C. 1968 Measurement of small-scale turbulence structure with hot-wires. J. Sci. Instrum. 1, 1105.Google Scholar
Wyngaard, J. C. 1969 Spatial resolution of the vorticity meter and other hot-wire arrays. J. Sci. Instrum. 2, 983.Google Scholar
Wyngaard, J. C. 1971 Spatial resolution of a resistance wire temperature sensor. Phys. Fluids 14, 2052.Google Scholar