Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T11:07:04.719Z Has data issue: false hasContentIssue false

Experimental study of wall shear rates in the entry region of a curved tube

Published online by Cambridge University Press:  18 April 2017

U. S. Choi
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley
L. Talbot
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley
I. Cornet
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley

Extract

Local wall shear rates in steady flow in the entry region of a curved tube have been measured by the electrochemical limiting current method. A semi-circular rigid tube of circular cross-section with radius ratio 1/7 has been employed for a range of Dean number between 139 and 2868. The circumferential and axial distributions of the wall shear rates have been measured at 20° circumferential increments at five different sections of the entry region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, Y. C., Talbot, L. & Gong, K. 1978 J. Fluid Mech. 85, 497.Google Scholar
Bbllhouse, B. J. & Talbot, L. 1969 J. Fluid Mech. 35, 721.Google Scholar
Caro, C. G., Fitz-Gerald, J. M. & Schroter, R. C. 1971 Proc. Boy. Soc. B 177, 109.Google Scholar
Choi, U. S. 1978 Experimental Study Of Wall Shear Rates In The Entry Region Of A Curved Tube. Ph.D. Thesis, University Of California, Berkeley.Google Scholar
Collins, W. M. & Dennis, S. C. R. 1975 Quart. J. Mech. Appl. Math. 28, 133.Google Scholar
Dean, W. R. 1927 Phil. Mag. 4, 208.Google Scholar
Dean, W. R. 1928 Phil. Mag. 5, 673.Google Scholar
Dravid, A. N., Smith, K. A., Merrill, E. W. & Brian, P. L. T. 1971 A.I.Ch.E. J. 17, 1107.Google Scholar
Fox, J. A. & Hugh, A. E. 1966 British Heart J. 28, 388.Google Scholar
Fry, D. L. 1968 Circ. Bes. 22, 165.Google Scholar
Fry, D. L. 1973 In Atherogenesis: Initiating Factors. Ciba Symposium, vol. 12, p. 93. North Holland: Elsevier, Excerpta Medica.Google Scholar
Gordon, S. L., Newman, J. S. & Tobias, C. W. 1965 Berichte der Bunsengesellschaftfiirphysikalische Chemie 70 (4), 414.Google Scholar
Hawthorne, W. R. 1951 Proc. Boy. Soc. A 206, 374.Google Scholar
Humphrey, J . A. C. 1977 Flow in ducts with curvature and roughness. Ph.D. thesis, Imperial College of Science and Technology.Google Scholar
Langhaar, H. L. 1942 J. Appl. Mech. 9, A 55.Google Scholar
Leveque, M. 1928 Annates des Mines 13, 201.Google Scholar
Lighthill, M. J. 1950 Proc. Boy. Soc. A 202, 359.Google Scholar
Lighthill, M. J. 1972 J. Fuid Mech. 52, 475.Google Scholar
Ling, S. C., Atabek, H. B., Fry, D. L., Patel, D. J. & Janicki, J. S. 1968 Circ. Bes. 23, 789.Google Scholar
McDonald, D. A. 1974 Blood Flow in Arteries. London: Edward Arnold Ltd.Google Scholar
Mitchell, J. R. & Schwarz, C. J. 1965 Arterial Disease. Oxford: Blackwell Scientific Publications.Google Scholar
Mizushina, T. 1971 In Adv. in Heat Transfer, vol. 7, (ed. Irvine, T. P. & Hartnett, J . P.), p. 87.Google Scholar
Nerem, R. M., Seed, W. A. & Wood, N. B. 1972 J. Fluid Mech. 52, 137.Google Scholar
Olson, D. E. 1971 Fluid mechanics relevant to respiratory flow within curved or elliptic tubes and bifurcating systems. Ph.D. thesis, Imperial College, London.Google Scholar
Patankar, S. V., Pratap, V. S. & Spalding, D. B. 1974 J. Fluid Mech. 62, 539.Google Scholar
Rodkiewicz, C. M. 1975 J. Biomech. 8, 149.CrossRefGoogle Scholar
Sohtjltz, D. L., Tunstall Pedoe, D. S., Lee, G. D. E .J., Gunning, A. J. & Bellhouse, B. J. 1969 In Circulatory and Bespiratory Mass Transport. A Ciba Foundation Symposium (ed. Wolstenholme, G. E. W. & Knight, J.), London: Churchill, p. 172.Google Scholar
Seban, R. A. & McLaughlin, G. F. 1963 Int. J. Heat Mass. Transfer 6, 387.Google Scholar
Singh, M. P. 1974 J. Fluid Mech. 65, 517.Google Scholar
Smith, F. T. 1976 Proc. Boy. Soc. A 351, 71.Google Scholar
Taylor, G. I. 1929 Proc. Boy. Soc. A 124, 243.Google Scholar
Van Dyke, M. 1978 J. Fluid Mech. 86, 129.Google Scholar
White, C. M. 1929 Proc. Boy. Soc. A 123, 645.Google Scholar
Yao, L. S. & Berger, S. A. 1975 J. Fluid Mech. 67, 177.CrossRefGoogle Scholar