Published online by Cambridge University Press: 24 August 2012
In fully developed single-phase turbulent flow in straight pipes, it is known that mean motions can occur in the plane of the pipe cross-section, when the cross-section is non-circular, or when the wall roughness is non-uniform around the circumference of a circular pipe. This phenomenon is known as secondary flow of the second kind and is associated with the anisotropy in the Reynolds stress tensor in the pipe cross-section. In this work, we show, using careful laser Doppler anemometry experiments, that secondary flow of the second kind can also be promoted by a non-uniform non-axisymmetric particle-forcing, in a fully developed turbulent flow in a smooth circular pipe. In order to isolate the particle-forcing from other phenomena, and to prevent the occurrence of mean particle-forcing in the pipe cross-section, which could promote a different type of secondary flow (secondary flow of the first kind), we consider a simplified well-defined situation: a non-uniform distribution of particles, kept at fixed positions in the ‘bottom’ part of the pipe, mimicking, in a way, the particle or droplet distribution in horizontal pipe flows. Our results show that the particles modify the turbulence through ‘direct’ effects (associated with the wake of the particles) and ‘indirect’ effects (associated with the global balance of momentum and the turbulence dynamics). The resulting anisotropy in the Reynolds stress tensor is shown to promote four secondary flow cells in the pipe cross-section. We show that the secondary flow is determined by the projection of the Reynolds stress tensor onto the pipe cross-section. In particular, we show that the direction of the secondary flow is dictated by the gradients of the normal Reynolds stresses in the pipe cross-section, and . Finally, a scaling law is proposed, showing that the particle-driven secondary flow scales with the root of the mean particle-forcing in the axial direction, allowing us to estimate the magnitude of the secondary flow.